-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathCoroutine.hpp
205 lines (177 loc) · 5.97 KB
/
Coroutine.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
// Copyright 2019 The SwiftShader Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "Reactor.hpp"
#include <memory>
#ifndef rr_ReactorCoroutine_hpp
# define rr_ReactorCoroutine_hpp
namespace rr {
// Base class for the template Stream<T>
class StreamBase
{
protected:
StreamBase(const std::shared_ptr<Routine> &routine, Nucleus::CoroutineHandle handle)
: routine(routine)
, handle(handle)
{}
~StreamBase()
{
auto pfn = (Nucleus::CoroutineDestroy *)routine->getEntry(Nucleus::CoroutineEntryDestroy);
pfn(handle);
}
bool await(void *out)
{
auto pfn = (Nucleus::CoroutineAwait *)routine->getEntry(Nucleus::CoroutineEntryAwait);
return pfn(handle, out);
}
private:
std::shared_ptr<Routine> routine;
Nucleus::CoroutineHandle handle;
};
// Stream is the interface to a running Coroutine instance.
// A Coroutine may Yield() values of type T, which can be retrieved with
// await().
template<typename T>
class Stream : public StreamBase
{
public:
inline Stream(const std::shared_ptr<Routine> &routine, Nucleus::CoroutineHandle handle)
: StreamBase(routine, handle)
{}
// await() retrieves the next yielded value from the coroutine.
// Returns true if the coroutine yieled a value and out was assigned a
// new value. If await() returns false, the coroutine has finished
// execution and await() will return false for all future calls.
inline bool await(T &out) { return StreamBase::await(&out); }
};
template<typename FunctionType>
class Coroutine;
// Coroutine constructs a reactor Coroutine function.
// rr::Coroutine is similar to rr::Function in that it builds a new
// executable function, but Coroutines have the following differences:
// (1) Coroutines do not support Return() statements.
// (2) Coroutines support Yield() statements to suspend execution of the
// coroutine and pass a value up to the caller. Yield can be called
// multiple times in a single execution of a coroutine.
// (3) The template argument T to Coroutine<T> is a C-style function
// signature.
// (4) Coroutine::operator() returns a rr::Stream<T> instead of an
// rr::Routine.
// (5) operator() starts execution of the coroutine immediately.
// (6) operator() uses the Coroutine's template function signature to
// ensure the argument types match the generated function signature.
//
// Example usage:
//
// // Build the coroutine function
// Coroutine<int()> coroutine;
// {
// Yield(Int(0));
// Yield(Int(1));
// Int current = 1;
// Int next = 1;
// While(true) {
// Yield(next);
// auto tmp = current + next;
// current = next;
// next = tmp;
// }
// }
//
// // Start the execution of the coroutine.
// auto s = coroutine();
//
// // Grab the first 20 yielded values and print them.
// for(int i = 0; i < 20; i++)
// {
// int val = 0;
// s->await(val);
// printf("Fibonacci(%d): %d", i, val);
// }
//
template<typename Return, typename... Arguments>
class Coroutine<Return(Arguments...)>
{
public:
Coroutine();
template<int index>
using CArgumentType = typename std::tuple_element<index, std::tuple<Arguments...>>::type;
template<int index>
using RArgumentType = CToReactorT<CArgumentType<index>>;
// Return the argument value with the given index.
template<int index>
Argument<RArgumentType<index>> Arg() const
{
Value *arg = Nucleus::getArgument(index);
return Argument<RArgumentType<index>>(arg);
}
// Completes building of the coroutine and generates the coroutine's
// executable code. After calling, no more reactor functions may be
// called without building a new rr::Function or rr::Coroutine.
// While automatically called by operator(), finalize() should be called
// as early as possible to release the global Reactor mutex lock.
inline void finalize(const Config::Edit &cfg = Config::Edit::None);
// Starts execution of the coroutine and returns a unique_ptr to a
// Stream<> that exposes the await() function for obtaining yielded
// values.
std::unique_ptr<Stream<Return>> operator()(Arguments...);
protected:
std::unique_ptr<Nucleus> core;
std::shared_ptr<Routine> routine;
std::vector<Type *> arguments;
};
template<typename Return, typename... Arguments>
Coroutine<Return(Arguments...)>::Coroutine()
{
core.reset(new Nucleus());
std::vector<Type *> types = { CToReactorT<Arguments>::getType()... };
for(auto type : types)
{
if(type != Void::getType())
{
arguments.push_back(type);
}
}
Nucleus::createCoroutine(CToReactorT<Return>::getType(), arguments);
}
template<typename Return, typename... Arguments>
void Coroutine<Return(Arguments...)>::finalize(const Config::Edit &cfg /* = Config::Edit::None */)
{
if(core != nullptr)
{
routine = core->acquireCoroutine("coroutine", cfg);
core.reset(nullptr);
}
}
template<typename Return, typename... Arguments>
std::unique_ptr<Stream<Return>>
Coroutine<Return(Arguments...)>::operator()(Arguments... args)
{
finalize();
using Sig = Nucleus::CoroutineBegin<Arguments...>;
auto pfn = (Sig *)routine->getEntry(Nucleus::CoroutineEntryBegin);
auto handle = pfn(args...);
return std::make_unique<Stream<Return>>(routine, handle);
}
# ifdef Yield // Defined in WinBase.h
# undef Yield
# endif
// Suspends execution of the coroutine and yields val to the caller.
// Execution of the coroutine will resume after val is retrieved.
template<typename T>
inline void Yield(const T &val)
{
Nucleus::yield(ValueOf(val));
}
} // namespace rr
#endif // rr_ReactorCoroutine_hpp