-
Notifications
You must be signed in to change notification settings - Fork 0
/
YAP-TAZ-Model.py
486 lines (372 loc) · 13.8 KB
/
YAP-TAZ-Model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
#!/usr/bin/env python
# coding: utf-8
# In[1]:
from pysb import *
from pysb.integrate import Solver
from pysb.simulator import ScipyOdeSimulator
import matplotlib.pyplot as plt
import numpy as np
import itertools
import sympy
#Define Model
Model()
# In[2]:
# Set Monomers (___ <---We can input any value we want in here)
Monomer('FAK', ['state'], {'state': ['p', 'u']})
Monomer('RhoA', ['state'], {'state': ['gtp', 'gdp']})
Monomer('ROCK', ['state'], {'state': ['a', 'i']})
Monomer('mDia', ['state'], {'state': ['A', 'i']})
Monomer('Myo', ['state'], {'state': ['A', 'i']})
Monomer('LIMK', ['state'], {'state': ['A', 'i']})
Monomer('Cofilin', ['state'], {'state': ['np', 'p']})
Monomer('G_actin', ['state'], {'state': ['Factin', 'i']})
Monomer('YAPTAZ', ['state'], {'state': ['i', 'p', 'nuc']})
Monomer('LaminA', ['state'], {'state': ['p', 'i']})
Monomer('NPC', ['state'], {'state': ['A', 'i']})
# In[3]:
# Setting Rate Constants
# Other Constants
#V is in Liters and we Choose what E is
V = 2300e-15 # Cytoplasm
V_2 = 550e-15 # Nucleus
V_tot = V + V_2
Avog_num = 6.022e23 # #/mol
# Units are in um^2
cell_SA = 1260 # Plasma Membrane
cell_SA_2 = 390 # Nuclear Membrane
ss_vals = []
# FAK Reaction
# Original Units for all (1/s)
Parameter('kf', 0.015)
Parameter('kdf', 0.035)
Parameter('ksf')
# RhoA Reaction
# Original Units: (1/s)
Parameter('kfkp', 0.0168)
# Original Units: 1/(uM^5)
Parameter('gamma', 77.56 * 1e30 / ((Avog_num * V) ** 5))
# Original Units: unitless
Parameter('n', 5)
# Used for 1st order Reverse reaction
# Original Units: (1/s)
Parameter('kde', 0.625)
# ROCK Reaction
# Will be used for 2nd order reaction
# Original units: 1/(s*uM)
Parameter('krp', 0.648 * 1e6 / (V * Avog_num))
# Will be used for 1st order reaction
# Original Units: (1/s)
Parameter('kd', 0.8)
# mDia Reaction
# Used for 2nd order reactions
# Original Units: 1/(s*uM)
Parameter('kmp', 0.002 * 1e6 / (V * Avog_num))
# Used for 1st order reactions
# Original Units: 1/s
Parameter('kdmDia', 0.005)
# Myo Reaction
# Both are 1st order
# Original Units: 1/s
Parameter('kmr', 0.03)
# Original Units: 1/uM
Parameter('e', 36 * 1e6 / (Avog_num * V))
# Original Units: 1/s
Parameter('kdmy', 0.067)
# LIMK Reaction
# Both are 1st order
# Original Units: 1/s
Parameter('klr', 0.07)
# Original Units: 1/uM
Parameter('tau', 55.49 * 1e6 / (Avog_num * V))
# Original Units: 1/s
Parameter('kdl', 2)
# Cofilin Reaction
# Used for 1st order reaction
# Original Units: 1/s
Parameter('kturnover', 0.04)
# Used for 1st order reaction
# Original Units: 1/s
Parameter('kcatcofilin', 0.34)
Parameter('kmcofilin', 4 * 1e-6 * V * Avog_num)
# G-actin to Factin Reaction
# Used for 1st order reaction
# Original Units: 1/s
Parameter('kra', 0.4)
# Original Units: 1/uM
Parameter('alpha', 50 * 1e6 / (Avog_num * V))
# Used for 1st order reaction
# Original Units: 1/s
Parameter('kdep', 3.5)
# Used for 2nd order reaction
# Original Units: 1/(s*uM)
Parameter('kfc1', 4 * 1e6 / (V * Avog_num))
# For the tanh Functions:
# Original Units: 1/(uM)
Parameter('sc1', 20 * 1e6 / (V * Avog_num))
# Original Units: uM
Parameter('ROCKB', 0.3 * 1e-6 * V * Avog_num)
Parameter('mDiaB', 0.165 * 1e-6 * V * Avog_num)
# YAPTAZ Reactions
# Used for 1st order reactions
# Original Units: 1/s
Parameter('knc', 0.14)
Parameter('kcn', 0.56)
# Used for 1st order reactions (although these are kinda weird)
# Original Units: #/(s*uM*um^2)
Parameter('kinb', 1 * 1e6 * cell_SA_2 / (Avog_num * V)) # <---- Derived using some calculations
Parameter('kout', 1 * 1e6 * cell_SA_2 / (Avog_num * V_2))
# Used for 3rd order reactions
# Original Units 1/((uM*)2)*s)
Parameter('kcy', 7.6e-4 * 1e12 / ((V * Avog_num) ** 2))
# Used for 2nd order Reaction
# Original Units: 1/(uM*s)
Parameter('kin', 10 * 1e6 / (V * Avog_num))
# LaminA Reactins
# Used for 1st order reactions
# Original Units: 1/s
Parameter('krl', 0.001)
Parameter('kfl', 0.46)
# Original Units: kPa/(uM^2.6)
Parameter('p', 9e-6)
# NPC Reactions
# Used for 1st order reactions
# Original Units: 1/s
Parameter('kr', 8.7)
# Used for a 4th order reaction
# Original Units: um^2/(#*uM^2*s)
Parameter('kfnpc', 2.8e-7 * 1e12 / (cell_SA_2 * (V * Avog_num) ** 2))
# In[4]:
# Setting the Initial Values
Parameter('FAKp_0', 0.3 * 1e-6 * V * Avog_num)
Initial(FAK(state='p'), FAKp_0)
Parameter('FAKu_0', 0.7 * 1e-6 * V * Avog_num)
Initial(FAK(state='u'), FAKu_0)
Parameter('RhoAgtp_0', 33.6 * cell_SA)
Initial(RhoA(state='gtp'), RhoAgtp_0)
Parameter('RhoAgdp_0', 1 * 1e-6 * V * Avog_num)
Initial(RhoA(state='gdp'), RhoAgdp_0)
Parameter('ROCKa_0', 0)
Initial(ROCK(state='a'), ROCKa_0)
Parameter('ROCKi_0', 1 * 1e-6 * V * Avog_num)
Initial(ROCK(state='i'), ROCKi_0)
Parameter('mDiaA_0', 0)
Initial(mDia(state='A'), mDiaA_0)
Parameter('mDiai_0', 0.8 * 1e-6 * V * Avog_num)
Initial(mDia(state='i'), mDiai_0)
Parameter('MyoA_0', 1.5 * 1e-6 * V * Avog_num)
Initial(Myo(state='A'), MyoA_0)
Parameter('Myoi_0', 3.5 * 1e-6 * V * Avog_num)
Initial(Myo(state='i'), Myoi_0)
Parameter('LIMKA_0', 0.1 * 1e-6 * V * Avog_num)
Initial(LIMK(state='A'), LIMKA_0)
Parameter('LIMKi_0', 1.9 * 1e-6 * V * Avog_num)
Initial(LIMK(state='i'), LIMKi_0)
Parameter('CofilinNP_0', 1.8 * 1e-6 * V * Avog_num)
Initial(Cofilin(state='np'), CofilinNP_0)
Parameter('CofilinP_0', 0.2 * 1e-6 * V * Avog_num)
Initial(Cofilin(state='p'), CofilinP_0)
Parameter('Factin_0', 17.9 * 1e-6 * V * Avog_num)
Initial(G_actin(state='Factin'), Factin_0)
Parameter('G_actin_0', 482.4 * 1e-6 * V * Avog_num)
Initial(G_actin(state='i'), G_actin_0)
Parameter('YAPTAZi_0', 0.7 * 1e-6 * V * Avog_num)
Initial(YAPTAZ(state='i'), YAPTAZi_0)
Parameter('YAPTAZnuc_0', 0.7 * 1e-6 * V_2 * Avog_num)
Initial(YAPTAZ(state='nuc'), YAPTAZnuc_0)
Parameter('YAPTAZp_0', 0.2 * 1e-6 * V * Avog_num)
Initial(YAPTAZ(state='p'), YAPTAZp_0)
Parameter('LaminAp_0', 3500 * cell_SA_2)
Initial(LaminA(state='p'), LaminAp_0)
Parameter('LaminAi_0', 0)
Initial(LaminA(state='i'), LaminAi_0)
Parameter('NPCA_0', 0)
Initial(NPC(state='A'), NPCA_0)
Parameter('NPCi_0', 6.5 * cell_SA_2)
Initial(NPC(state='i'), NPCi_0)
# In[5]:
# Observables
Observable('obsFAKp', FAK(state='p'))
Observable('obsFAKu', FAK(state='u'))
Observable('obsRhoAgtp', RhoA(state='gtp'))
Observable('obsRhoAgdp', RhoA(state='gdp'))
Observable('obsROCKa', ROCK(state='a'))
Observable('obsROCKi', ROCK(state='i'))
Observable('obsmDiaA', mDia(state='A'))
Observable('obsmDiai', mDia(state='i'))
Observable('obsMyoA', Myo(state='A'))
Observable('obsMyoi', Myo(state='i'))
Observable('obsLIMKA', LIMK(state='A'))
Observable('obsLIMKi', LIMK(state='i'))
Observable('obsCofilinNP', Cofilin(state='np'))
Observable('obsCofilinP', Cofilin(state='p'))
Observable('obsFactin', G_actin(state='Factin'))
Observable('obsG_actin', G_actin(state='i'))
Observable('obsYAPTAZnuc', YAPTAZ(state='nuc'))
Observable('obsYAPTAZp', YAPTAZ(state='p'))
Observable('obsYAPTAZi', YAPTAZ(state='i'))
Observable('obsLaminAp', LaminA(state='p'))
Observable('obsLaminAi', LaminA(state='i'))
Observable('obsNPCA', NPC(state='A'))
Observable('obsNPCi', NPC(state='i'))
# In[6]:
# Rules
# FAK
# Regular Forward and Backward FAK Reaction
Rule('activ_FAK', FAK(state='u') | FAK(state='p'), kf, kdf)
# Forward FAK Reaction activated by stiffness
Rule('activ_FAK_stiff', FAK(state='u') >> FAK(state='p'), ksf)
# RhoA
Expression('RhoAgdp_to_RhoAgtp', kfkp * (gamma * obsFAKp ** 5 + 1))
Rule('activ_RhoA', RhoA(state='gdp') | RhoA(state='gtp'), RhoAgdp_to_RhoAgtp, kde)
# ROCK
# 2nd Order Forward Reaction
Rule('activ_ROCK', ROCK(state='i') + RhoA(state='gtp') >> ROCK(state='a') + RhoA(state='gtp'), krp)
# 1st Order Reverse Reaction
Rule('deactiv_ROCK', ROCK(state='a') >> ROCK(state='i'), kd)
# mDia
# 2nd Order Forward Reaction
Rule('activ_mDia', RhoA(state='gtp') + mDia(state='i') >> RhoA(state='gtp') + mDia(state='A'), kmp)
# 1st Order Reverse Reaction
Rule('deactiv_mDia', mDia(state='A') >> mDia(state='i'), kdmDia)
# Myo
Expression('Myo_to_MyoA', kmr * (e * ((sympy.tanh(sc1 * (obsROCKa - ROCKB)) + 1) * obsROCKa * 0.5) + 1))
Rule('activ_Myo', Myo(state='i') | Myo(state='A'), Myo_to_MyoA, kdmy)
# LIMK
Expression('LIMK_to_LIMKA', klr * (tau * ((sympy.tanh(sc1 * (obsROCKa - ROCKB)) + 1) * obsROCKa * 0.5) + 1))
Rule('activ_LIMKA', LIMK(state='i') | LIMK(state='A'), LIMK_to_LIMKA, kdl)
# Cofilin
Rule('activ_cofilin', Cofilin(state='p') >> Cofilin(state='np'), kturnover)
Expression('cofilinNP_to_cofilinP', kcatcofilin / (kmcofilin + obsCofilinNP))
Rule('deactiv_cofilin', Cofilin(state='np') + LIMK(state='A') >> Cofilin(state='p') + LIMK(state='A'),
cofilinNP_to_cofilinP)
# G_Actin to Factin
Expression('G_actin_to_Factin', kra * (alpha * ((sympy.tanh(sc1 * (obsmDiaA - mDiaB)) + 1) * obsmDiaA * 0.5) + 1))
Rule('activ_G_actin', G_actin(state='i') | G_actin(state='Factin'), G_actin_to_Factin, kdep)
Rule('deactiv_G_actin_Cofilin',
G_actin(state='Factin') + Cofilin(state='np') >> G_actin(state='i') + Cofilin(state='np'), kfc1)
# YAPTAZ
# Basal YAPTAZ to YAPTAZp
Rule('YAPTAZ_to_YAPTAZp_basal', YAPTAZ(state='i') | YAPTAZ(state='p'), knc, kcn)
# YAPTAZp to YAPTAZ Catalyzed by Factin and MyoA
Rule('YAPTAZp_to_YAPTAZ',
G_actin(state='Factin') + Myo(state='A') + YAPTAZ(state='p') >> G_actin(state='Factin') + Myo(state='A') + YAPTAZ(
state='i'), kcy)
# YAPTAZnuc to YAPTAZ Basal
Rule('YAPTAZnuc_to_YAPTAZ', YAPTAZ(state='i') | YAPTAZ(state='nuc'), kinb, kout)
# YAPTAZ to YAPTAZnuc with NPCA opening
Rule('YAPTAZ_to_YAPTAZnuc', NPC(state='A') + YAPTAZ(state='i') >> NPC(state='A') + YAPTAZ(state='nuc'), kin)
# LaminA
Expression('Stiffness_LaminA',
(p * (obsFactin * 1e6 / (V * Avog_num)) ** 2.6) / (100 + (p * (obsFactin * 1e6 / (V * Avog_num)) ** 2.6)))
Expression('LaminA_Deactiv', Stiffness_LaminA * kfl)
Rule('LaminA_to_LaminAp', LaminA(state='i') | LaminA(state='p'), krl, LaminA_Deactiv)
# NPC
# NPC Closing
Rule('NPC_close', NPC(state='A') >> NPC(state='i'), kr)
# NPC Opening
Rule('NPC_open',
NPC(state='i') + LaminA(state='i') + G_actin(state='Factin') + Myo(state='A') >> NPC(state='A') + LaminA(
state='i') + G_actin(state='Factin') + Myo(state='A'), kfnpc)
stiffness = 10**np.arange(-3, 8.1, 0.1)
for E in stiffness:
print(E)
ksf.value = 0.379 * (E / (E + 3.250))
tspan = np.linspace(0, 100000, 500)
sim = ScipyOdeSimulator(model, tspan)
result = sim.run()
ss_vals.append(result.observables[-1])
# Fig 2A
FAK_tot = [ss_vals[i]['obsFAKp'] + ss_vals[i]['obsFAKu'] for i in range(len(stiffness))]
pFAK_div_FAKtot = [ss_vals[i]['obsFAKp'] / FAK_tot[i] for i in range(len(stiffness))]
plt.figure()
plt.title('Ratio of pFAK to Total FAK')
plt.plot(stiffness, pFAK_div_FAKtot, 'k-', lw=2)
plt.xlabel('kPa')
plt.ylabel('pFAK/Total FAK')
plt.xscale('log')
# plt.ylim(0, 1.2)
# Fig 2B
RhoAGTP_convert = [(1e6/(Avog_num*cell_SA))*ss_vals[i]['obsRhoAgtp'] for i in range(len(stiffness))]
plt.figure()
plt.title('RhoA GTP')
plt.plot(stiffness, RhoAGTP_convert, 'k-', lw=2)
plt.xlabel('kPa')
plt.ylabel('RhoAGTP (umol/um^2)')
plt.xscale('log')
plt.xlim(xmin=1)
plt.ylim(7e-16, 12e-16)
# Fig 2C
Myo_tot = [ss_vals[i]['obsMyoA'] + ss_vals[i]['obsMyoi'] for i in range(len(stiffness))]
MyoA_div_Myotot = [ss_vals[i]['obsMyoA'] / Myo_tot[i] for i in range(len(stiffness))]
plt.figure()
plt.title('Ratio of MyoA to Total Myo')
plt.plot(stiffness, MyoA_div_Myotot, 'k-', lw=2)
plt.xlabel('kPa')
plt.ylabel('MyoA/Total Myo')
plt.xscale('log')
plt.xlim(xmin=1)
plt.ylim(0.5, 1.2)
# Fig 2D
LaminA_div_LaminAp = [ss_vals[i]['obsLaminAi'] / ss_vals[i]['obsLaminAp'] for i in range(len(stiffness))]
plt.figure()
plt.title('Ratio of LaminA to LaminAp')
plt.plot(stiffness, LaminA_div_LaminAp, 'k-', lw=2)
plt.xlabel('kPa')
plt.ylabel('LaminA/LaminAp')
plt.xlim(0,50)
plt.ylim(0,8)
# Fig 2E
YAPTAZnuc_div_cyto = np.array([ss_vals[i]['obsYAPTAZnuc'] / (ss_vals[i]['obsYAPTAZi'] + ss_vals[i]['obsYAPTAZp'])
for i in range(len(stiffness))])
plt.figure()
plt.title('Ratio of Nuclear YAPTAZ to Cytosolic YAPTAZ')
plt.plot(stiffness, YAPTAZnuc_div_cyto*(V/V_2), 'k-', lw=2)
plt.xlabel('kPa')
plt.ylabel('YAPTAZ N/C')
plt.xscale('log')
plt.ylim(0.5,4.5)
plt.show()
# plt.title('FAK and FAKp')
# plt.plot(tspan, result.observables['obsFAKu'], tspan, result.observables['obsFAKp'])
# plt.legend(['FAK', 'FAKp'])
# plt.show()
# plt.title('RhoAGDP and RhoAGTP')
# plt.plot(tspan, result.observables['obsRhoAgdp'], tspan, result.observables['obsRhoAgtp'])
# plt.legend(['RhoAGDP', 'RhoAGTP'])
# plt.show()
# plt.title('ROCK and ROCKa')
# plt.plot(tspan, result.observables['obsROCKi'], tspan, result.observables['obsROCKa'])
# plt.legend(['ROCK', 'ROCKa'])
# plt.show()
# plt.title('mDia and mDiaA')
# plt.plot(tspan, result.observables['obsmDiai'], tspan, result.observables['obsmDiaA'])
# plt.legend(['mDia', 'mDiaA'])
# plt.show()
# plt.title('Myo and MyoA')
# plt.plot(tspan, result.observables['obsMyoi'], tspan, result.observables['obsMyoA'])
# plt.legend(['Myo', 'MyoA'])
# plt.show()
# plt.title('LIMK and LIMKA')
# plt.plot(tspan, result.observables['obsLIMKi'], tspan, result.observables['obsLIMKA'])
# plt.legend(['LIMK', 'LIMKA'])
# plt.show()
# plt.title('CofilinP and CofilinNP')
# plt.plot(tspan, result.observables['obsCofilinP'], tspan, result.observables['obsCofilinNP'])
# plt.legend(['CofilinP', 'CofilinNP'])
# plt.show()
# plt.title('G-actin and Factin')
# plt.plot(tspan, result.observables['obsG_actin'], tspan, result.observables['obsFactin'])
# plt.legend(['G-actin', 'Factin'])
# plt.show()
# plt.title('YAPTAZ, YAPTAZp and YAPTAZnuc')
# plt.plot(tspan, result.observables['obsYAPTAZi'], tspan, result.observables['obsYAPTAZp'], tspan, result.observables['obsYAPTAZnuc'])
# plt.legend(['YAPTAZ', 'YAPTAZp', 'YAPTAZnuc'])
# plt.show()
# plt.title('LaminA and LaminAp')
# plt.plot(tspan, result.observables['obsLaminAi'], tspan, result.observables['obsLaminAp'])
# plt.legend(['LaminA', 'LaminAp'])
# plt.show()
# plt.title('NPC and NPCA')
# plt.plot(tspan, result.observables['obsNPCi'], tspan, result.observables['obsNPCA'])
# plt.legend(['NPC', 'NPCA'])
# plt.show()