diff --git a/benches/benchmark_plots.py b/benches/benchmark_plots.py index 6b59f9d..b156796 100644 --- a/benches/benchmark_plots.py +++ b/benches/benchmark_plots.py @@ -41,7 +41,6 @@ def build_and_clean_data( def plot(data: dict[str, list], n_range: range) -> None: index = [bytes2human(2**n * (128 / 8)) for n in n_range] - plt.figure() y0 = np.asarray(data["fftw3"]) y1 = np.asarray(data["phastft"]) @@ -59,34 +58,39 @@ def plot(data: dict[str, list], n_range: range) -> None: index=index, ) - df.plot(kind="bar", linewidth=3, rot=0) - plt.xticks(fontsize=9, rotation=-45) - plt.yticks(fontsize=9) + title = "PhastFT vs. FFTW3 vs. RustFFT" + df.plot(kind="bar", linewidth=2, rot=0, title=title) + plt.xticks(fontsize=8, rotation=-45) plt.xlabel("size of input") - plt.ylabel("time taken (relative to RustFFT)") + plt.ylabel("Execution Time Ratio\n(relative to RustFFT)") plt.legend(loc="best") plt.tight_layout() - plt.savefig("benchmarks_bar_plot.png", dpi=600) + plt.savefig(f"benchmarks_bar_plot_{n_range.start}_{n_range.stop -1}.png", dpi=600) plt.show() def main(): + """Entry point... yay""" lib_names = ("rustfft", "phastft", "fftw3") - n_range = range(4, 30) - all_data = {} + ranges = (range(4, 13), range(13, 30)) - for lib in lib_names: - root_folder = find_directory() - if root_folder is None: - raise FileNotFoundError("unable to find the benchmark data directory") + for n_range in ranges: + all_data = {} - data = build_and_clean_data(root_folder, n_range, lib) - all_data[lib] = data + for lib in lib_names: + root_folder = find_directory() + if root_folder is None: + raise FileNotFoundError("unable to find the benchmark data directory") - assert ( - len(all_data["rustfft"]) == len(all_data["fftw3"]) == len(all_data["phastft"]) - ) - plot(all_data, n_range) + data = build_and_clean_data(root_folder, n_range, lib) + all_data[lib] = data + + assert ( + len(all_data["rustfft"]) + == len(all_data["fftw3"]) + == len(all_data["phastft"]) + ) + plot(all_data, n_range) if __name__ == "__main__": diff --git a/benches/py_benchmarks.py b/benches/py_benchmarks.py index 58c5cec..ce42eae 100644 --- a/benches/py_benchmarks.py +++ b/benches/py_benchmarks.py @@ -5,6 +5,9 @@ import numpy as np import pandas as pd import pyfftw + +pyfftw.interfaces.cache.enable() + from pybindings import fft from utils import bytes2human @@ -13,36 +16,30 @@ def gen_random_signal(dim: int) -> np.ndarray: - return np.asarray( + """Generate a random, complex 1D signal""" + return np.ascontiguousarray( np.random.randn(dim) + 1j * np.random.randn(dim), dtype="complex128", ) def main() -> None: - with open("elapsed_times.csv", "w", newline="") as csvfile: + with open("elapsed_times.csv", "w", newline="", encoding="utf-8") as csvfile: fieldnames = ["n", "phastft_time", "numpy_fft_time", "pyfftw_fft_time"] writer = csv.DictWriter(csvfile, fieldnames=fieldnames) writer.writeheader() - for n in range(12, 29): + for n in range(4, 29): print(f"n = {n}") big_n = 1 << n s = gen_random_signal(big_n) - a_re = [None] * len(s) - a_im = [None] * len(s) - - for i, val in enumerate(s): - a_re[i] = val.real - a_im[i] = val.imag - - a_re = np.asarray(a_re, dtype=np.float64) - a_im = np.asarray(a_im, dtype=np.float64) + a_re = np.ascontiguousarray(s.real, dtype=np.float64) + a_im = np.ascontiguousarray(s.imag, dtype=np.float64) start = time.time() - fft(a_re, a_im) + fft(a_re, a_im, "f") phastft_elapsed = round((time.time() - start) * 10**6) print(f"PhastFT completed in {phastft_elapsed} us") @@ -68,11 +65,11 @@ def main() -> None: a = pyfftw.empty_aligned(big_n, dtype="complex128") a[:] = arr start = time.time() - b = pyfftw.interfaces.numpy_fft.fft(a) + a = pyfftw.interfaces.numpy_fft.fft(a) pyfftw_elapsed = round((time.time() - start) * 10**6) print(f"pyFFTW completed in {pyfftw_elapsed} us") - np.testing.assert_allclose(b, actual, rtol=1e-3, atol=0) + np.testing.assert_allclose(a, actual, rtol=1e-3, atol=0) writer.writerow( { @@ -85,18 +82,19 @@ def main() -> None: file_path = "elapsed_times.csv" loaded_data = read_csv_to_dict(file_path) - plot_elapsed_times(loaded_data) - grouped_bar_plot(loaded_data) + grouped_bar_plot(loaded_data, start=0, end=9) + grouped_bar_plot(loaded_data, start=9, end=29) def read_csv_to_dict(file_path: str) -> dict: + """Read the benchmark results from the csv file and convert it to a dict""" data: dict[str, list] = { "n": [], "phastft_time": [], "numpy_fft_time": [], "pyfftw_fft_time": [], } - with open(file_path, newline="") as csvfile: + with open(file_path, newline="", encoding="utf-8") as csvfile: reader = csv.DictReader(csvfile) for row in reader: data["n"].append(int(row["n"])) @@ -113,6 +111,7 @@ def read_csv_to_dict(file_path: str) -> dict: def plot_elapsed_times(data: dict) -> None: + """Plot the timings for all libs using line plots""" index = [bytes2human(2**n * (128 / 8)) for n in data["n"]] np_fft_timings = np.asarray(data["numpy_fft_time"]) pyfftw_timings = np.asarray(data["pyfftw_fft_time"]) @@ -122,9 +121,8 @@ def plot_elapsed_times(data: dict) -> None: plt.plot(index, pyfftw_timings, label="PyFFTW FFT", lw=0.8) plt.plot(index, phastft_timings, label="PhastFT", lw=0.8) - plt.title("FFT Elapsed Times Comparison") - plt.xticks(fontsize=9, rotation=-45) - plt.yticks(fontsize=9) + plt.title("PhastFT vs. pyFFTW vs. NumPy FFT") + plt.xticks(fontsize=8, rotation=-45) plt.xlabel("size of input") plt.ylabel("time (us)") plt.yscale("log") @@ -133,14 +131,14 @@ def plot_elapsed_times(data: dict) -> None: plt.savefig("py_benchmarks.png", dpi=600) -def grouped_bar_plot(data: dict): +def grouped_bar_plot(data: dict, start=0, end=1): + """Plot the timings for all libs using a grouped bar chart""" index = data["n"] index = [bytes2human(2**n * (128 / 8)) for n in index] np_fft_timings = np.asarray(data["numpy_fft_time"]) pyfftw_timings = np.asarray(data["pyfftw_fft_time"]) # / np_fft_timings phastft_timings = np.asarray(data["phastft_time"]) # / np_fft_timings - plt.figure() df = pd.DataFrame( { "NumPy fft": np.ones(len(index)), @@ -150,12 +148,11 @@ def grouped_bar_plot(data: dict): index=index, ) - _ax = df.plot(kind="bar", linewidth=3, rot=0) - plt.title("FFT Elapsed Times Comparison") - plt.xticks(fontsize=9, rotation=-45) - plt.yticks(fontsize=9) + title = "PhastFT vs. pyFFTW vs. NumPy FFT" + df[start:end].plot(kind="bar", linewidth=2, rot=0, title=title) + plt.xticks(fontsize=8, rotation=-45) plt.xlabel("size of input") - plt.ylabel("time taken (relative to NumPy FFT)") + plt.ylabel("Execution Time Ratio\n(relative to NumPy FFT)") plt.legend(loc="best") plt.tight_layout() plt.savefig("py_benchmarks_bar_plot.png", dpi=600) diff --git a/benches/utils.py b/benches/utils.py index ea4e0ce..a76218f 100644 --- a/benches/utils.py +++ b/benches/utils.py @@ -6,7 +6,6 @@ import re from datetime import datetime - SYMBOLS = { "customary": ("B", "K", "M", "G", "T", "P", "E", "Z", "Y"), "customary_ext": (