-
Notifications
You must be signed in to change notification settings - Fork 1
/
app.py
236 lines (204 loc) · 9.91 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import whisper
import streamlit as st
from streamlit_lottie import st_lottie
from utils import write_vtt, write_srt
import ffmpeg
import requests
from typing import Iterator
from io import StringIO
import numpy as np
import pathlib
import os
st.set_page_config(page_title="Auto Subtitled Video Generator", page_icon=":movie_camera:", layout="wide")
# Define a function that we can use to load lottie files from a link.
def load_lottieurl(url: str):
r = requests.get(url)
if r.status_code != 200:
return None
return r.json()
APP_DIR = pathlib.Path(__file__).parent.absolute()
LOCAL_DIR = APP_DIR / "local"
LOCAL_DIR.mkdir(exist_ok=True)
save_dir = LOCAL_DIR / "output"
save_dir.mkdir(exist_ok=True)
loaded_model = whisper.load_model("base")
current_size = "None"
col1, col2 = st.columns([1, 3])
with col1:
lottie = load_lottieurl("https://assets1.lottiefiles.com/packages/lf20_HjK9Ol.json")
st_lottie(lottie)
with col2:
st.write("""
## Auto Subtitled Video Generator
##### Upload a video file and get a video with subtitles.
###### ➠ If you want to transcribe the video in its original language, select the task as "Transcribe"
###### ➠ If you want to translate the subtitles to English, select the task as "Translate"
###### I recommend starting with the base model and then experimenting with the larger models, the small and medium models often work well. """)
@st.cache_resource
def change_model(current_size, size):
if current_size != size:
loaded_model = whisper.load_model(size)
return loaded_model
else:
raise Exception("Model size is the same as the current size.")
def inferecence(_loaded_model, uploaded_file, task):
with open(f"{save_dir}/input.mp4", "wb") as f:
f.write(uploaded_file.read())
audio = ffmpeg.input(f"{save_dir}/input.mp4")
audio = ffmpeg.output(audio, f"{save_dir}/output.wav", acodec="pcm_s16le", ac=1, ar="16k")
ffmpeg.run(audio, overwrite_output=True)
if task == "Transcribe":
options = dict(task="transcribe", best_of=5)
results = _loaded_model.transcribe(f"{save_dir}/output.wav", **options)
vtt = getSubs(results["segments"], "vtt", 80)
srt = getSubs(results["segments"], "srt", 80)
lang = results["language"]
return results["text"], vtt, srt, lang
elif task == "Translate":
options = dict(task="translate", best_of=5)
results = _loaded_model.transcribe(f"{save_dir}/output.wav", **options)
vtt = getSubs(results["segments"], "vtt", 80)
srt = getSubs(results["segments"], "srt", 80)
lang = results["language"]
return results["text"], vtt, srt, lang
else:
raise ValueError("Task not supported")
def getSubs(segments: Iterator[dict], format: str, maxLineWidth: int) -> str:
segmentStream = StringIO()
if format == 'vtt':
write_vtt(segments, file=segmentStream, maxLineWidth=maxLineWidth)
elif format == 'srt':
write_srt(segments, file=segmentStream, maxLineWidth=maxLineWidth)
else:
raise Exception("Unknown format " + format)
segmentStream.seek(0)
return segmentStream.read()
def generate_subtitled_video(video, audio, transcript):
video_file = ffmpeg.input(video)
audio_file = ffmpeg.input(audio)
ffmpeg.concat(video_file.filter("subtitles", transcript), audio_file, v=1, a=1).output("final.mp4").run(quiet=True,
overwrite_output=True)
video_with_subs = open("final.mp4", "rb")
return video_with_subs
def main():
size = st.selectbox(
"Select Model Size (The larger the model, the more accurate the transcription will be, but it will take longer)",
["tiny", "base", "small", "medium", "large"], index=1)
loaded_model = change_model(current_size, size)
st.write(f"Model is {'multilingual' if loaded_model.is_multilingual else 'English-only'} "
f"and has {sum(np.prod(p.shape) for p in loaded_model.parameters()):,} parameters.")
input_file = st.file_uploader("File", type=["mp4", "avi", "mov", "mkv"])
# get the name of the input_file
if input_file is not None:
filename = input_file.name[:-4]
else:
filename = None
task = st.selectbox("Select Task", ["Transcribe", "Translate"], index=0)
if task == "Transcribe":
if st.button("Transcribe"):
results = inferecence(loaded_model, input_file, task)
col3, col4 = st.columns(2)
col5, col6, col7, col8 = st.columns(4)
col9, col10 = st.columns(2)
with col3:
st.video(input_file)
with open("transcript.txt", "w+", encoding='utf8') as f:
f.writelines(results[0])
f.close()
with open(os.path.join(os.getcwd(), "transcript.txt"), "rb") as f:
datatxt = f.read()
with open("transcript.vtt", "w+", encoding='utf8') as f:
f.writelines(results[1])
f.close()
with open(os.path.join(os.getcwd(), "transcript.vtt"), "rb") as f:
datavtt = f.read()
with open("transcript.srt", "w+", encoding='utf8') as f:
f.writelines(results[2])
f.close()
with open(os.path.join(os.getcwd(), "transcript.srt"), "rb") as f:
datasrt = f.read()
with col5:
st.download_button(label="Download Transcript (.txt)",
data=datatxt,
file_name="transcript.txt")
with col6:
st.download_button(label="Download Transcript (.vtt)",
data=datavtt,
file_name="transcript.vtt")
with col7:
st.download_button(label="Download Transcript (.srt)",
data=datasrt,
file_name="transcript.srt")
with col9:
st.success(
"You can download the transcript in .srt format, edit it (if you need to) and upload it to YouTube to create subtitles for your video.")
with col10:
st.info(
"Streamlit refreshes after the download button is clicked. The data is cached so you can download the transcript again without having to transcribe the video again.")
with col4:
with st.spinner("Generating Subtitled Video"):
video_with_subs = generate_subtitled_video(f"{save_dir}/input.mp4", f"{save_dir}/output.wav",
"transcript.srt")
st.video(video_with_subs)
st.snow()
with col8:
st.download_button(label="Download Video with Subtitles",
data=video_with_subs,
file_name=f"{filename}_with_subs.mp4")
elif task == "Translate":
if st.button("Translate to English"):
results = inferecence(loaded_model, input_file, task)
col3, col4 = st.columns(2)
col5, col6, col7, col8 = st.columns(4)
col9, col10 = st.columns(2)
with col3:
st.video(input_file)
with open("transcript.txt", "w+", encoding='utf8') as f:
f.writelines(results[0])
f.close()
with open(os.path.join(os.getcwd(), "transcript.txt"), "rb") as f:
datatxt = f.read()
with open("transcript.vtt", "w+", encoding='utf8') as f:
f.writelines(results[1])
f.close()
with open(os.path.join(os.getcwd(), "transcript.vtt"), "rb") as f:
datavtt = f.read()
with open("transcript.srt", "w+", encoding='utf8') as f:
f.writelines(results[2])
f.close()
with open(os.path.join(os.getcwd(), "transcript.srt"), "rb") as f:
datasrt = f.read()
with col5:
st.download_button(label="Download Transcript (.txt)",
data=datatxt,
file_name="transcript.txt")
with col6:
st.download_button(label="Download Transcript (.vtt)",
data=datavtt,
file_name="transcript.vtt")
with col7:
st.download_button(label="Download Transcript (.srt)",
data=datasrt,
file_name="transcript.srt")
with col9:
st.success(
"You can download the transcript in .srt format, edit it (if you need to) and upload it to YouTube to create subtitles for your video.")
with col10:
st.info(
"Streamlit refreshes after the download button is clicked. The data is cached so you can download the transcript again without having to transcribe the video again.")
with col4:
with st.spinner("Generating Subtitled Video"):
video_with_subs = generate_subtitled_video(f"{save_dir}/input.mp4", f"{save_dir}/output.wav",
"transcript.srt")
st.video(video_with_subs)
st.snow()
with col8:
st.download_button(label="Download Video with Subtitles ",
data=video_with_subs,
file_name=f"{filename}_with_subs.mp4")
else:
st.error("Please select a task.")
if __name__ == "__main__":
main()
st.markdown(
"###### Made with :heart: by [@QubitPi](https://github.com/QubitPi) [![this is an image link](https://i.imgur.com/thJhzOO.png)](https://buymeacoffee.com/qubitpi)")