-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvision.py
71 lines (50 loc) · 1.93 KB
/
vision.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
from dotenv import load_dotenv
load_dotenv() # take environment variables from .env.
import streamlit as st
import os
import pathlib
import textwrap
from PIL import Image
import google.generativeai as genai
os.getenv("GOOGLE_API_KEY")
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
## Function to load OpenAI model and get respones
def get_gemini_response(input,image,prompt):
model = genai.GenerativeModel('gemini-pro-vision')
response = model.generate_content([input,image[0],prompt])
return response.text
def input_image_setup(uploaded_file):
# Check if a file has been uploaded
if uploaded_file is not None:
# Read the file into bytes
bytes_data = uploaded_file.getvalue()
image_parts = [
{
"mime_type": uploaded_file.type, # Get the mime type of the uploaded file
"data": bytes_data
}
]
return image_parts
else:
raise FileNotFoundError("No file uploaded")
##initialize our streamlit app
st.set_page_config(page_title="Radixile Task")
st.header("AI Invoice Assistant")
input=st.text_input("Input Prompt: ",key="input")
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
image=""
if uploaded_file is not None:
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image.", use_column_width=True)
submit=st.button("Tell me about the image")
input_prompt = """
You are an expert in understanding invoices.
You will receive input images as invoices &
you will have to answer questions based on the input image
"""
## If ask button is clicked
if submit:
image_data = input_image_setup(uploaded_file)
response=get_gemini_response(input_prompt,image_data,input)
st.subheader("The Response is")
st.write(response)