-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathserver.R
924 lines (742 loc) · 36.9 KB
/
server.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
## Shiny server for MB MassArray Classification
## Machine learning model and classifier code by Dr Reza Rafiee 2014-2017
## Adaptation and Shiny code: Dr Matthew Bashton
## load libraries
library(shiny)
library(e1071) #for SVM classifier
library(Amelia) #for multiple imputation modeling
library(parallel) # For mclapply speeds up probability estimation
library(gtools) # Needed for numerically rather than lexicographically sorted strings
source("cleanSeq4.R") # Needed to read MassArray csv export
##### Threshold setting ####
# 0.6931212 is default for external site
# 0.600455 is default for internal site
# EXTERNAL
threshold <- 0.6931212
## MB ##
# Need to load in samples here
# Will also need to call Ed's clean up funtion, get UI working first, before testing lastest NewGene data.
### Get input file name from UI
shinyServer(function(input, output) {
#############################################################################
######################## Reactive classifier function #######################
#############################################################################
classifier <- reactive({
# input$file1 will be NULL initially. After the user selects
# and uploads a file, it will be a data frame with 'name',
# 'size', 'type', and 'datapath' columns. The 'datapath'
# column will contain the local filenames where the data can
# be found.
inFile <- input$file1
if (is.null(inFile))
return(NULL)
cat("input file is here:\n")
cat(inFile$datapath, "\n")
withProgress(message = 'Processing data', value = 0, {
# Start the clock
cat("Timing start\n")
ptm <- proc.time()
# For raw data use cleanSeq4
#incProgress(0.10, detail = paste("Processing and cleaning raw data"))
# File system less data passing
## MB changes here for legacy code compatibility and new BS conversion effiency data.
#Sample.test <- cleanSeq4(filename=inFile$datapath)
returned_data <- cleanSeq4(filename=inFile$datapath)
# Re-create old Sample.tests
Sample.test <- returned_data[[1]]
# New BS_Eff
BS_Eff <- returned_data[[2]]
#raw_betas <- Sample.test
# For cleaned data
#Sample.test <- read.csv(inFile$datapath, header=TRUE,row.names=1)
## MB ##
# Not having 17 probes will cause issues later down stream in the analysis, these are the white listed ones
Probes_17 <- c("cg00583535", "cg18788664", "cg08123444", "cg17185060", "cg04541368", "cg25923609", "cg06795768", "cg19336198", "cg05851505", "cg20912770", "cg09190051", "cg01986767", "cg01561259", "cg12373208", "cg24280645", "cg00388871", "cg09923107")
# Replacing orginal object in case it's used below
Sample.test <- Sample.test[Probes_17,]
seq.test.BEM.97 <- Sample.test
Total.No.of.Samples <- ncol(seq.test.BEM.97)
Original.No.of.Samples <-ncol(seq.test.BEM.97)
#############################################################
# Quality Control1: checking the number of missing probes
# and rejecting those which have not meet the criterion
#############################################################
## MB
incProgress(0.10, detail = paste("Checking for missing probes"))
missing_matrix1 <- matrix(ncol=2, nrow=Total.No.of.Samples,0.0)
missing_matrix1[,1] <- colnames(seq.test.BEM.97)
colnames(missing_matrix1) <- c("SampleNames","NumberofMissingOutof17")
# this cut-off value obtained by running the classifier on the Goldcohort with different combinations of missing probes
probe_threshold <- 7
for (j in 1:Total.No.of.Samples)
{
missing_counter <- 0
for (i in 1:nrow(seq.test.BEM.97))
{
if (is.na(seq.test.BEM.97[i,j]))
{
missing_counter <- missing_counter + 1
}
}
missing_matrix1[j,2] <- missing_counter
}
failed.samples <- vector()
index.fs <- 0 # index of failed samples
failed_sample_names <- vector() # These are the sample names that failed, we will return these later
for (j in 1:Total.No.of.Samples)
{
if (as.double(missing_matrix1[j,2]) >= probe_threshold)
{
index.fs <- index.fs + 1
failed.samples[index.fs] <- j
failed_sample_names <- append(failed_sample_names, missing_matrix1[j])
}
}
# if empty don't do this bit!
if (length(failed.samples) > 0) {
cat("\nSome samples failed\n")
seq.test.failed <- seq.test.BEM.97[,1:length(failed.samples)]
seq.test.failed <- seq.test.BEM.97[,c(failed.samples)] #failed samples
seq.test.BEM.97 <- seq.test.BEM.97[,-c(failed.samples)] #passed samples
#updating the total number of sample for classifiying
Total.No.of.Samples <- ncol(seq.test.BEM.97)
}
# Save missing probes for use later in output
missing_summary <- as.data.frame(apply(Sample.test, 2, function(x) length(which(is.na(x)))))
############################################################
# Should only run if we have more than 1 sample which has less than 7 missing probes
if (Total.No.of.Samples > 0 ) {
############################################################
## MB
incProgress(0.10, detail = paste("Loading training sets"))
## 13 October 2015, 220 Training set (225 - 5 Grp3 samples: NMB273, NMB376, NMB405, NMB666, NMB717)
Trainingset450k17WithSubgroup <- as.matrix(read.csv("220TrainingSet450KforSequenomClassifierwithSubgroupOriginal13Oct2015_ver4.csv",header=T,row.names=1))
Trainingset450k17 <- Trainingset450k17WithSubgroup[1:17,]
labels220 <- as.character(Trainingset450k17WithSubgroup[18,])
subgroup.labels <- factor(labels220)
y1 <- subgroup.labels
############################################################
## If no NAs in seq.test.BEM.97 then skip this bit too. ####
if (anyNA(seq.test.BEM.97 == TRUE)) {
cat("\nWe have some missing NA probes\nImputing missing vlaues\n")
## MB
incProgress(0.10, detail = paste("Imputation Modelling missing probes"))
## MB setting bounds for amelia
amelia_bounds <- matrix(c(1:17, rep(0,17), rep(1,17)), nrow = 17, ncol = 3)
# Multiple Imputation Modelling using Bootstrapping Expectation Maximization Algorithm
# Handling missing probes
# Amelia package
# Using EM algorithm and Bootstrapping for handling missing probes
# using passed samples for multiple imputation modelling :seq.test.BEM.97
# Imputation cohort has now updated based on 101 NMBs instead of 103 NMBs
Cohort101.test <- read.csv("101GoldCohortSeqDataAfterBEM17Probes08Oct2015.csv",header=T,row.names=1)
Combined.cohort2 <- cbind(Cohort101.test,seq.test.BEM.97)
set.seed(1234)
Combined.datasets.models <- amelia(x = t(Combined.cohort2), m = 20, p2s = 1, frontend = FALSE, tolerance = 0.0001, bounds = amelia_bounds, max.resample = 20) # 18/12/2015
summary(Combined.datasets.models)
cl2_11 <- t(Combined.datasets.models$imputations[[1]]) # Saving the third imputed data
cl2_11 <- cl2_11[,-c(1:ncol(Cohort101.test))]
m <- 20 # number of imputation dataset
# computing the average
Bothcohort_combined <- cl2_11
for (i in 1:nrow(Sample.test)) #should be 17 probes
{
for (j in 1:Total.No.of.Samples) #ncol(seq.test.BEM.97)) #the number of samples
{
if (is.na(seq.test.BEM.97[i,j]))
{
sum.imputed <- 0
for (k in 1:m)
{
cl2_temp <- t(Combined.datasets.models$imputations[[k]])
cl2_temp <- cl2_temp[,-c(1:ncol(Cohort101.test))]
sum.imputed <- sum.imputed + cl2_temp[i,j]
}
avg.imputed <- sum.imputed/m
Bothcohort_combined[i,j] <- avg.imputed
}
}
}
seq.test.BEM.97 <- Bothcohort_combined
Total.No.of.Samples <- ncol(seq.test.BEM.97)
} else if (anyNA(seq.test.BEM.97 == FALSE)) {
cat ("\nNo missing NA probes skiped Imputation Modelling\n")
}
#############################################################
## Further analysis to assess confidence of calls ###########
## MB
incProgress(0.10, detail = paste("Assessing confidence of subgroup calls: stage 1"))
x <- 1000 ## Number of iterations
# Do once to get samples in rows H <- t(H)
train.beta <- Trainingset450k17 #mat_data_training
amount <- round(0.8*nrow(t(train.beta)))
sel2 <- lapply(1:x, function(i) {
set.seed(i)
sample(1:nrow(t(train.beta)), amount, replace=F)
})
## MB this bit causes a delay
incProgress(0.10, detail = paste("Assessing confidence of subgroup calls: stage 2"))
linear.svms <- mclapply(1:x,
mc.cores=4,
function(i) svm(x = t(Trainingset450k17)[sel2[[i]],],
y = y1[sel2[[i]]], scale = F,
tolerance = 0.00001, type = "C-classification",
kernel = "radial",cost = 1,
gamma=0.03125, probability = T,
seed=i)
)
## Test on Sequenom cases
incProgress(0.10, detail = paste("Assessing confidence of subgroup calls: stage 3"))
linear.tests <- mclapply(1:x,
mc.cores=4,
function(i) predict(linear.svms[[i]],
newdata=t(seq.test.BEM.97),
decision.values = T,
probability = T)
)
incProgress(0.10, detail = paste("Assessing confidence of subgroup calls: stage 4"))
linear.calls <-lapply(1:x, function(i) linear.tests[[i]][1:17])
incProgress(0.10, detail = paste("Assessing confidence of subgroup calls: stage 5"))
prob.test <- (lapply(1:x,
function(i) attr(linear.tests[[i]], "probabilities"))
)
# old code for old conf interval 13/02/2015
#probs2 <- predictConf(prob.test)
####################################### New Creating Pobes2 #################################
# MB code from Reza to replace that of predictConf
k <- FALSE
for (j in 1:x) # the number of iterations
{
predProbTemp <-prob.test[[j]] # j iteration
predProbTemp <- predProbTemp[,c("1", "2", "3","4")] # order the matrix based on the subgroup orders
if (k == FALSE) # Making defult tables
{
predProbabilities <- matrix(ncol = 4, nrow =nrow(predProbTemp)*x, 0.0)
predProbabilities <- predProbTemp
colnames(predProbabilities) <- c("WNT","SHH", "Grp3", "Grp4")
k <- TRUE
}
else
{
#Adding other iteration probabilities to the created table in the ordered columns
predProbabilities <- rbind(predProbabilities,predProbTemp)
}
}
probs2 <- matrix(ncol=nrow(predProbTemp),nrow=x,0.0)
colnames(probs2) <- rownames(predProbTemp)
for (ttt in 1:nrow(predProbTemp)) # number of samples
{
mmm <- matrix(ncol = 4, nrow =x, 0.0)
colnames(mmm) <- c("WNT","SHH", "Grp3", "Grp4")
gg <- 0
for (fftt in 1:x)
{
gg <- gg + 1
mmm[gg,] <- predProbabilities[ttt+nrow(predProbTemp)*(fftt-1),]
#predProbabilities[1+3*0,1+3*1,1+3*2,1+nrow(predProbTemp)*(x-1)] # for the first sample, n=3
}
ProbSubgroup <- apply(mmm[,1:4],1,max)
probs2[,ttt] <- ProbSubgroup
}
####################################### End New Creating Pobes2 #############################
presumed.class <- c(rep("Unknown",Total.No.of.Samples))
i=1234
incProgress(0.10, detail = paste("Assessing confidence of subgroup calls: stage 6"))
model <- svm(t(Trainingset450k17),y1,scale = F, tolerance = 0.00001, type = "C-classification", kernel = "radial",cost = 1, gamma=0.03125, probability = T, seed=i)
test.pred <- predict(object=model, newdata=t(seq.test.BEM.97), probability=TRUE)
prob.test <- signif(attr(test.pred, "probabilities"), digits=2)
maxProbs <- apply(prob.test,1,max)
# New code here 13/02/2015
# maxProbsWhich <- predict(model,newdata=t(seq.test.BEM.97))
maxProbsWhich <- factor(test.pred[1:nrow(prob.test)],levels=c("1", "2", "3", "4"))
maxProbsCol <- ifelse(maxProbsWhich==1,"blue",ifelse(maxProbsWhich==2,"red",
ifelse(maxProbsWhich==3,"yellow2","darkgreen")))
maxProbsCol2 <- ifelse(maxProbsCol=="yellow2","#EEEE0066", ifelse(maxProbsCol=="blue","#0000FF66",
ifelse(maxProbsCol=="darkgreen","#00640066","#FF000066")))
# MB Output for classification table
levels(maxProbsWhich) <- c("WNT", "SHH", "Grp3", "Grp4")
#results.df <- data.frame(names(maxProbsWhich), maxProbsWhich, maxProbs, row.names = NULL)
results.df <- data.frame(names(maxProbsWhich), as.character(maxProbsWhich), maxProbs, row.names = NULL, stringsAsFactors = FALSE)
colnames(results.df) <- c("Sample", "Subgroup", "Confidence")
# Stop the clock
time<- (proc.time() - ptm)
# Return all the things:
classified_data <- list(results.df,
Sample.test,
missing_summary,
Total.No.of.Samples,
Original.No.of.Samples,
failed.samples,
failed_sample_names,
probe_threshold,
probs2,
maxProbsWhich,
maxProbs,
maxProbsCol,
maxProbsCol2,
time,
BS_Eff)
names(classified_data) <- c("results.df",
"Sample.test",
"missing_summary",
"Total.No.of.Samples",
"Original.No.of.Samples",
"failed.samples",
"failed_sample_names",
"probe_threshold",
"probs2",
"maxProbsWhich",
"maxProbs",
"maxProbsCol",
"maxProbsCol2",
"time",
"BS_Eff")
return(classified_data)
# End if if (Total.No.of.Samples > 0 )
} else if (Total.No.of.Samples == 0) {
# At this point need to set up empty data if we've got nothing to classify
# Stop the clock
time<- (proc.time() - ptm)
# Return all the things:
classified_data <- list(Sample.test,
missing_summary,
Total.No.of.Samples,
Original.No.of.Samples,
failed.samples,
failed_sample_names,
probe_threshold,
time,
BS_Eff)
names(classified_data) <- c("Sample.test",
"missing_summary",
"Total.No.of.Samples",
"Original.No.of.Samples",
"failed.samples",
"failed_sample_names",
"probe_threshold",
"time",
"BS_Eff")
return(classified_data)
}
# Let user know we're done
setProgress(value = 1, message = "Done!")
cat("\nDone classification\n")
}) # End with progress
#########################################################################
################## End of classifier reactive function ##################
#########################################################################
}) # End reactive classifier function
# Output classification_table #####
output$classification_table <- renderDataTable({
classified_data <- classifier()
if (is.null(classified_data)) return(NULL)
# Now check for no of samples, if more than 0 run existing code
Total.No.of.Samples <- classified_data$Total.No.of.Samples
if( Total.No.of.Samples > 0 ) {
# Now run existing code
results.df <- classified_data$results.df
# Change name to Subgroup Call of 2nd col
colnames(results.df)[2] <- "Subgroup Call"
# Add a probe QC column
results.df[,4] <- "Pass"
colnames(results.df)[4] <- "Probe QC"
failed.samples <- classified_data$failed.samples
# Apply threshold and label samples as unclassifiable
thresholded_results.df <- results.df
i <- 1
for (i in 1:nrow(results.df)) {
if (!results.df[i,"Confidence"] > threshold) {
thresholded_results.df[i,"Subgroup Call"] <- "Unclassifiable"
thresholded_results.df[i,"Confidence"] <- NA
}
}
# Inject failed samples that did not pass missing probes threshold test if we have them
if (length(failed.samples > 0)) {
failed_sample_names <- classified_data$failed_sample_names
i <- 1
new.results.df <- thresholded_results.df
for (i in i:length(failed.samples)) {
new.results.df <- rbind(new.results.df, c(failed_sample_names[i], "-", NA, "Fail"))
}
# Convert to percentage (because medics)
new.results.df[,3] <- as.character(as.numeric(new.results.df[,3])*100)
colnames(new.results.df)[3] <- "Probability %"
# Now return the df but with NAs replaced by -
new.results.df[is.na(new.results.df)] <- "-"
# Sort via sample ID (correctly)
new.results.df <- new.results.df[mixedorder(new.results.df[,1]),]
return(new.results.df)
# Where we don't have any failed samples simply return the df but with NAs
# replaced by -
} else {
# Convert to percentage (because medics)
thresholded_results.df[,3] <- as.character(as.numeric(thresholded_results.df[,3])*100)
colnames(thresholded_results.df)[3] <- "Probability %"
thresholded_results.df[is.na(thresholded_results.df)] <- "-"
# Sort via sample ID (correctly)
thresholded_results.df <- thresholded_results.df[mixedorder(thresholded_results.df[,1]),]
return(thresholded_results.df)
}
# End failed sample injector
} else if (Total.No.of.Samples == 0 ) {
# Recreate results.df
# Get failed samples and their names
failed_sample_names <- classified_data$failed_sample_names
i <- 1
results.df <- data.frame(matrix(nrow = 0, ncol =4), stringsAsFactors = FALSE)
for (i in 1:length(failed_sample_names)) {
results.df <- rbind(results.df, c(failed_sample_names[i], "-", "-", "Fail"), stringsAsFactors = FALSE)
}
colnames(results.df) <- c("Sample", "Subgroup Call", "Probability %", "Probe QC")
new.results.df <- results.df[mixedorder(results.df[,1]),]
return(new.results.df)
}
# End Total.No.of.Samples > 0
})
output$downloadClassification <- downloadHandler(
filename = "MB_classification.csv",
content = function(file) {
classified_data <- classifier()
if (is.null(classified_data)) return(NULL)
# Now check for no of samples, if more than 0 run existing code
Total.No.of.Samples <- classified_data$Total.No.of.Samples
# Also need to check Total.No.Of.Samples here
if( Total.No.of.Samples > 0 ) {
# Now run existing code
results.df <- classified_data$results.df
# Change name to Subgroup Call of 2nd col
colnames(results.df)[2] <- "Subgroup Call"
# Add a probe QC column
results.df[,4] <- "Pass"
colnames(results.df)[4] <- "Probe QC"
failed.samples <- classified_data$failed.samples
# Apply threshold and label samples as unclassifiable
thresholded_results.df <- results.df
i <- 1
for (i in 1:nrow(results.df)) {
if (!results.df[i,"Confidence"] > threshold) {
thresholded_results.df[i,"Subgroup Call"] <- "Unclassifiable"
thresholded_results.df[i,"Confidence"] <- NA
}
}
# Inject failed samples that did not pass missing probes threshold test if we have them
if (length(failed.samples > 0)) {
failed_sample_names <- classified_data$failed_sample_names
i <- 1
new.results.df <- thresholded_results.df
for (i in i:length(failed.samples)) {
new.results.df <- rbind(new.results.df, c(failed_sample_names[i], "-", NA, "Fail"))
}
# Convert to percentage (because medics)
new.results.df[,3] <- as.character(as.numeric(new.results.df[,3])*100)
colnames(new.results.df)[3] <- "Probability %"
# Now return the df but with NAs replaced by -
new.results.df[is.na(new.results.df)] <- "-"
# Sort via sample ID (correctly)
new.results.df <- new.results.df[mixedorder(new.results.df[,1]),]
write.csv(new.results.df, file, row.names = FALSE)
# Where we don't have any failed samples simply return the df but with NAs
# replaced by -
} else {
# Convert to percentage (because medics)
thresholded_results.df[,3] <- as.character(as.numeric(thresholded_results.df[,3])*100)
thresholded_results.df[is.na(thresholded_results.df)] <- "-"
# Sort via sample ID (correctly)
thresholded_results.df <- thresholded_results.df[mixedorder(thresholded_results.df[,1]),]
colnames(thresholded_results.df)[3] <- "Probability %"
write.csv(thresholded_results.df, file, row.names = FALSE)
}
# End failed sample injector
} else if (Total.No.of.Samples == 0) {
# Recreate results.df
# Get failed samples and their names
failed_sample_names <- classified_data$failed_sample_names
i <- 1
results.df <- data.frame(matrix(nrow = 0, ncol =4), stringsAsFactors = FALSE)
for (i in 1:length(failed_sample_names)) {
results.df <- rbind(results.df, c(failed_sample_names[i], "-", "-", "Fail"), stringsAsFactors = FALSE)
}
colnames(results.df) <- c("Sample", "Subgroup Call", "Probability %", "Probe QC")
results.df <- results.df[mixedorder(results.df[,1]),]
write.csv(results.df, file, row.names = FALSE)
}
}
)
###################################
# Output Missing probe summary ####
# Note now changed to ouput "informative probes"
output$mp <- renderDataTable({
classified_data <- classifier()
if (is.null(classified_data)) return(NULL)
missing_summary <- classified_data$missing_summary
missing_table <- data.frame(rownames(missing_summary), 17-missing_summary[, 1], row.names=NULL, stringsAsFactors = FALSE)
missing_table <- missing_table[mixedorder(missing_table[,1]),]
colnames(missing_table) <- c("Sample", "Number of Informative Probes")
missing_table
})
output$downloadMissing <- downloadHandler(
filename = "MB_informative_probes.csv",
content = function(file) {
classified_data <- classifier()
if (is.null(classified_data)) return(NULL)
missing_summary <- classified_data$missing_summary
missing_table <- data.frame(rownames(missing_summary), 17-missing_summary[, 1], row.names=NULL, stringsAsFactors = FALSE)
missing_table <- missing_table[mixedorder(missing_table[,1]),]
colnames(missing_table) <- c("Sample", "Number of Informative Probes")
write.csv(missing_table, file, row.names = FALSE)
}
)
###################################
# Output number of failed samples #
output$fs <- renderText({
classified_data <- classifier()
if (is.null(classified_data)) return(NULL)
Total.No.of.Samples <- classified_data$Total.No.of.Samples
failed.samples <- classified_data$failed.samples
failed_sample_names <- classified_data$failed_sample_names
probe_threshold <- classified_data$probe_threshold
if (length(failed.samples) > 0) {
c(length(failed.samples), "sample(s) failed Probe QC having", probe_threshold, "or more missing probes:", paste(failed_sample_names, collapse = ", "))
} else if (length(failed.samples) == 0) {
"All samples passed missing Probe QC"
}
})
###################################
# Output number of unclassifable samples
# List samples (if any) that could not be classified above the threshold
output$fc <- renderText({
classified_data <- classifier()
if (is.null(classified_data)) return(NULL)
# Now check for no of samples, if more than 0 run existing code
Total.No.of.Samples <- classified_data$Total.No.of.Samples
if(Total.No.of.Samples > 0) {
# Now run existing code
results.df <- classified_data$results.df
unclassifiable <- results.df[results.df[3] < threshold, 1]
if (length(unclassifiable) > 0) {
c(length(unclassifiable), "samples(s) passing Probe QC could not be confidently assigned a subgroup call:", paste(unclassifiable, collapse = ", "))
} else if (length(unclassifiable) == 0) {
"All samples passing Probe QC were successfully assigned a subgroup"
}
# End Total.No.of.Samples > 0
} else if (Total.No.of.Samples == 0) {
"All samples failed Probe QC, no samples can be classified"
}
})
###################################
# Output BS con eff ###############
output$BS_Eff <- renderDataTable({
classified_data <- classifier()
if (is.null(classified_data)) return(NULL)
BS_Eff_table <- classified_data$BS_Eff
# Convert sample name factor to character vector
BS_Eff_table[,1] <- as.character(BS_Eff_table[,1])
# Change col name
colnames(BS_Eff_table)[2] <- "Bisulphite conversion efficiency %"
# New Order
BS_Eff_table <- BS_Eff_table[mixedorder(BS_Eff_table[,1]),]
# Round down percentages
is.num <- sapply(BS_Eff_table, is.numeric)
BS_Eff_table[is.num] <- lapply(BS_Eff_table[is.num], round, 1)
BS_Eff_table
})
output$downloadBS_Eff <- downloadHandler(
filename = "MB_BS_Eff.csv",
content = function(file) {
classified_data <- classifier()
if (is.null(classified_data)) return(NULL)
BS_Eff_table <- classified_data$BS_Eff
# Convert sample name factor to character vector
BS_Eff_table[,1] <- as.character(BS_Eff_table[,1])
# Change col name
colnames(BS_Eff_table)[2] <- "Bisulphite conversion efficiency %"
# New Order
BS_Eff_table <- BS_Eff_table[mixedorder(BS_Eff_table[,1]),]
# Round down percentages
is.num <- sapply(BS_Eff_table, is.numeric)
BS_Eff_table[is.num] <- lapply(BS_Eff_table[is.num], round, 1)
write.csv(BS_Eff_table, file, row.names = FALSE)
}
)
###################################
# Output graph ####################
## MB totally reworked to get sane graph of WNT, SHH, Grp3, Grp4
output$classifierPlot <- renderPlot({
classified_data <- classifier()
if (is.null(classified_data)) return(NULL)
# Now check for no of samples, if more than 0 run existing code
Total.No.of.Samples <- classified_data$Total.No.of.Samples
if (Total.No.of.Samples > 0) {
# Now run existing code
probs2 <- classified_data$probs2
maxProbsWhich <- classified_data$maxProbsWhich
maxProbs <- classified_data$maxProbs
maxProbsCol <- classified_data$maxProbsCol
maxProbsCol2 <- classified_data$maxProbsCol2
# Code to remove samples below threshold from plot
cat(paste("Removing data points below threshold", threshold, "from graph:\n"))
index <- maxProbs > threshold
cat(names(maxProbs[!index]), "\n")
new.probs2 <- probs2[,index]
new.maxProbs <- maxProbs[index]
new.maxProbsWhich <- maxProbsWhich[index]
new.maxProbsCol <- maxProbsCol[index]
new.maxProbsCol2 <- maxProbsCol2[index]
new.Total.No.of.Samples <- length(maxProbs[index])
par(mfrow=c(1,1))
#par(mar=c(6,4,2,1) + 0.1)
par(mar=c(6,4,4,1) + 0.1)
par(cex=1.3)
par(cex.axis=1)
heading <- paste("Medulloblastoma subgroup call confidence intervals for", new.Total.No.of.Samples, "samples")
boxplot(yaxt="n",xlab="",main=heading,ylab="Probability",new.probs2[,order(new.maxProbsWhich, new.maxProbs)],outpch=NA,ylim=c(0,1),las=2,
col=new.maxProbsCol2[order(new.maxProbsWhich,new.maxProbs)] )
abline(col="grey",lty = 1, h = threshold)
# How many subgroups of each colour are we plotting
tmp <- table(new.maxProbsCol)
desired_col_order <-c("blue", "red", "yellow2", "darkgreen")
to_sort <- names(tmp)
# Re order by correct sub group col order using match on the desired_col_order vector
tmp <- tmp[to_sort[order(match(to_sort,desired_col_order))]]
# Index of where to draw the sub group deviders via cumsum
grp.sum <- cumsum(tmp)
# Add 0.5 to grp.sum for abline
grp.sum <- grp.sum + 0.5
# Index out final element of grp.sum to get rid of unwanted final abline
grp.sum <- grp.sum[1:length(grp.sum)-1]
# Check
grp.sum
abline(v=grp.sum)
#lines(col="black",lwd=2,new.maxProbs[order(new.maxProbsWhich,new.maxProbs)])
points(col=new.maxProbsCol[order(new.maxProbsWhich,new.maxProbs)],pch=19, new.maxProbs[order(new.maxProbsWhich,new.maxProbs)])
legend("bottomleft", legend = c("WNT", "SHH", "Grp3", "Grp4"), col=c("blue", "red", "yellow2", "darkgreen"), pch=19)
axis(2, las=2)
# End if Total.No.of.Samples > 1
} else if (Total.No.of.Samples == 0) {
plot(0,0, xaxt = "n", yaxt = "n", xlab = '', ylab = '', frame.plot = FALSE, pch = 4, cex = 10, col = "red", main = "No samples to classify")
}
})
# End output graph ################
# Output graph download ####################
## MB totally reworked to get sane graph of WNT, SHH, Grp3, Grp4
output$PlotDownload <- downloadHandler(
filename = "MB_classification.png",
content = function(file) {
classified_data <- classifier()
if (is.null(classified_data)) return(NULL)
# Now check for no of samples, if more than 0 run existing code
Total.No.of.Samples <- classified_data$Total.No.of.Samples
if (Total.No.of.Samples > 0) {
# Now run existing code
probs2 <- classified_data$probs2
maxProbsWhich <- classified_data$maxProbsWhich
maxProbs <- classified_data$maxProbs
maxProbsCol <- classified_data$maxProbsCol
maxProbsCol2 <- classified_data$maxProbsCol2
# Code to remove samples below threshold from plot
cat(paste("Removing data points below threshold", threshold, "from graph:\n"))
index <- maxProbs > threshold
cat(names(maxProbs[!index]), "\n")
new.probs2 <- probs2[,index]
new.maxProbs <- maxProbs[index]
new.maxProbsWhich <- maxProbsWhich[index]
new.maxProbsCol <- maxProbsCol[index]
new.maxProbsCol2 <- maxProbsCol2[index]
new.Total.No.of.Samples <- length(maxProbs[index])
heading <- paste("Medulloblastoma subgroup call confidence intervals for", new.Total.No.of.Samples, "samples")
png(file, height = 1280, width = 1440)
par(mfrow=c(1,1))
par(mar=c(7,4,4,1) + 0.1)
par(cex=2)
par(cex.axis=1)
boxplot(yaxt="n",xlab="",main=heading,ylab="Probability",new.probs2[,order(new.maxProbsWhich, new.maxProbs)],outpch=NA,ylim=c(0,1),las=2,
col=new.maxProbsCol2[order(new.maxProbsWhich,new.maxProbs)] )
abline(col="grey",lty = 1, h = threshold)
# How many subgroups of each colour are we plotting
tmp <- table(new.maxProbsCol)
desired_col_order <-c("blue", "red", "yellow2", "darkgreen")
to_sort <- names(tmp)
# Re order by correct sub group col order using match on the desired_col_order vector
tmp <- tmp[to_sort[order(match(to_sort,desired_col_order))]]
# Index of where to draw the sub group deviders via cumsum
grp.sum <- cumsum(tmp)
# Add 0.5 to grp.sum for abline
grp.sum <- grp.sum + 0.5
# Index out final element of grp.sum to get rid of unwanted final abline
grp.sum <- grp.sum[1:length(grp.sum)-1]
abline(v=grp.sum)
#lines(col="black",lwd=2,new.maxProbs[order(new.maxProbsWhich,new.maxProbs)])
points(col=new.maxProbsCol[order(new.maxProbsWhich,new.maxProbs)],pch=19, new.maxProbs[order(new.maxProbsWhich,new.maxProbs)])
legend("bottomleft", legend = c("WNT", "SHH", "Grp3", "Grp4"), col=c("blue", "red", "yellow2", "darkgreen"), pch=19)
axis(2, las=2)
dev.off()
# End if Total.No.of.Samples > 1
} else if (Total.No.of.Samples == 0) {
png(file, height = 1280, width = 1440)
plot(0,0, xaxt = "n", yaxt = "n", xlab = '', ylab = '', frame.plot = FALSE, pch = 4, cex = 10, col = "red", main = "No samples to classify")
dev.off()
}
})
# End output graph download ################
# Output time taken ###############
output$time <- renderText({
classified_data <- classifier()
if (is.null(classified_data)) return(NULL)
time <- classified_data$time
c("Classification took", format(time[3]), "seconds")
})
###################################
# Output β-values
Plex <- c("cg00583535"="Plex 1",
"cg18788664"="Plex 1",
"cg08123444"="Plex 1",
"cg17185060"="Plex 2",
"cg04541368"="Plex 3",
"cg25923609"="Plex 3",
"cg06795768"="Plex 3",
"cg19336198"="Plex 1",
"cg05851505"="Plex 2",
"cg20912770"="Plex 3",
"cg09190051"="Plex 1",
"cg01986767"="Plex 2",
"cg01561259"="Plex 2",
"cg12373208"="Plex 1",
"cg24280645"="Plex 2",
"cg00388871"="Plex 1",
"cg09923107"="Plex 3")
output$Beta <- renderDataTable(options = list(
lengthMenu = list(c(10, 17, -1), c('10', '17', 'All')),
pageLength = 17
), {
classified_data <- classifier()
if (is.null(classified_data)) return(NULL)
betas <- round(classified_data$Sample.test, 2)
betas[is.na(betas)] <- "-"
Plex <- Plex[rownames(betas)]
betas <- cbind(Plex, betas)
betas <- cbind(rownames(classified_data$Sample.test), betas)
colnames(betas) <- c("Probe ID", colnames(betas)[-1])
betas <- betas[order(betas[,"Plex"], betas[,"Probe ID"]),]
# Blue Monday
neworder <- mixedorder(colnames(betas[,c(-1,-2)]))+2
betas <- betas[,c(1,2,neworder)]
betas
})
output$downloadBeta <- downloadHandler(
filename = "MB_beta_values.csv",
content = function(file) {
classified_data <- classifier()
if (is.null(classified_data)) return(NULL)
betas <- round(classified_data$Sample.test, 2)
Plex <- Plex[rownames(betas)]
betas <- cbind(Plex, betas)
betas <- cbind(rownames(classified_data$Sample.test), betas)
colnames(betas) <- c("Probe ID", colnames(betas)[-1])
betas <- betas[order(betas[,"Plex"], betas[,"Probe ID"]),]
# Blue Monday
neworder <- mixedorder(colnames(betas[,c(-1,-2)]))+2
betas <- betas[,c(1,2,neworder)]
write.csv(betas, file, row.names = FALSE)
}
)
}) # End shinyServer