-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodis_grid_VegCol.jl
executable file
·355 lines (316 loc) · 11 KB
/
modis_grid_VegCol.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
using ArgParse
using Base, Dates, Printf
# NetCDF tools for reading and writing
using NCDatasets
# Basic statistics
using Statistics
# File search and completion
using Glob
# JSON files
import JSON
# Parallel computing
using Distributed, SharedArrays, DataStructures
# Profiler
using Profile
using ProgressMeter
function parse_commandline()
s = ArgParseSettings()
@add_arg_table s begin
"--Dict"
help = "JSON dictionary file to use"
arg_type = String
#default = "/home/cfranken/code/gitHub/Gridding/gridding/modis_all.json"
default = "/home/lyh/modis_all.json"
"--outFile", "-o"
help = "output filename"
arg_type = String
#default = "MODIS_map.nc"
default = "/home/lyh/MODIS_map.nc"
"--monthly"
help = "Use time-steps in terms of months (not days)"
action = :store_true
"--latMin"
help = "Lower latitude bound"
arg_type = Float32
default = -90.0f0
"--latMax"
help = "Upper latitude bound"
arg_type = Float32
default = 90.0f0
"--lonMin"
help = "Lower longitude bound"
arg_type = Float32
default = -180.0f0
"--lonMax"
help = "Upper longitude bound"
arg_type = Float32
default = 180.0f0
"--dLat"
help = "latitude resolution"
arg_type = Float32
#default = 1.0f0
default = 0.5f0
"--dLon"
help = "longitude resolution"
arg_type = Float32
#default = 1.0f0
default = 0.5f0
"--startDate"
help = "Start Date (in YYYY-MM-DD)"
arg_type = String
#default = "2018-03-07"
default = "2018-07-15"
"--stopDate"
help = "Stop Date (in YYYY-MM-DD)"
arg_type = String
#default = "2018-10-31"
default = "2018-07-16"
"--dDays"
help = "Time steps in days (or months if --monthly is set)"
arg_type = Int64
#default = 8
default = 1
end
return parse_args(s)
end
L=1/0.0001
C1 = 6.
C2 = 7.5
G = 2.5
function findUnique(iLon_,iLat_)
lon = Int64[]
lat = Int64[]
N = Int64[]
woLon = unique(iLon_)
for i in woLon
indLon = findall(iLon_.==i)
println(indLon)
woLat = unique(iLat_[indLon])
println("U ", i)
for j in woLat
#println(i," ", j)
indLat = findall(iLat_[indLon].==j)
push!(N,length(indLat))
push!(lon,i)
push!(lat,j)
end
end
println("Size ", size(N))
return lon,lat,N
end
function aver!(mat_data, mat_in, iLon_,iLat_, idx)
NDVI = zeros(Float32,1)
d = size(mat_in)
#ind = [iLon_ iLat_]
#println(size(unique(ind)))
@inbounds for i = 1:length(idx)
#println(iLon_[i]," ",iLat_[i])
#println(d[1]-1)
A = view(mat_in,1:d[1]-1,idx[i][2],idx[i][1])
#println(sum(A))
if sum(A)<229369
# if !any(A.==32767)
# NIR reflectance > 0.01, gets rid of water
if(A[2]*0.0001>0.03)
for j=1:d[1]-1
mat_data[j,iLon_[i],iLat_[i]] += mat_in[j,idx[i][2],idx[i][1]]*0.0001
end
# Compute vegetation indices here:
# EVI
mat_data[d[1],iLon_[i],iLat_[i]] +=G*(A[2]-A[1])/(A[2]+C1*A[1]-C2*A[3]+L)
# NDVI
NDVI[1] = (A[2]-A[1])/(A[2]+A[1])
mat_data[d[1]+1,iLon_[i],iLat_[i]] += NDVI[1]
# NIRv
mat_data[d[1]+2,iLon_[i],iLat_[i]] += NDVI[1]*A[2]*0.0001
# NWDI
mat_data[d[1]+3,iLon_[i],iLat_[i]] +=(A[2]-A[5])/(A[2]+A[5])
# N
mat_data[end,iLon_[i],iLat_[i]] += mat_in[end,idx[i][2],idx[i][1]]
end
end
end
end
function main()
#addprocs()
# Parse command line arguments
ar = parse_commandline()
# Find files to be processed
startDate = DateTime(ar["startDate"])
stopDate = DateTime(ar["stopDate"])
if ar["monthly"]
dDay = Dates.Month(ar["dDays"])
else
dDay = Dates.Day(ar["dDays"])
end
println(startDate, " ", stopDate)
cT = length(startDate:dDay:stopDate)
# Just lazy (too cumbersome in code as often used variables here)
latMax = ar["latMax"]
latMin = ar["latMin"]
lonMax = ar["lonMax"]
lonMin = ar["lonMin"]
dLat = ar["dLat"]
dLon = ar["dLon"]
eps = dLat/100
# Define spatial grid:
lat = collect(latMin+dLat/2.:dLat:latMax-dLat/2.0+eps)
lon = collect(lonMin+dLon/2.:dLon:lonMax-dLon/2.0+eps)
println("Output file dimension (time/lon/lat):")
println(cT, "/", length(lon),"/", length(lat))
# Create output file:
dsOut = Dataset(ar["outFile"],"c")
defDim(dsOut,"lon",length(lon))
defDim(dsOut,"lat",length(lat))
defDim(dsOut,"time", cT)
dsLat = defVar(dsOut,"lat",Float32,("lat",), attrib = ["units" => "degrees_north","long_name" => "Latitude"])
dsLon = defVar(dsOut,"lon",Float32,("lon",), attrib = ["units" => "degrees_east","long_name" => "Longitude"])
dsTime= defVar(dsOut,"time",Float32,("time",),attrib = ["units" => "days since 1970-01-01","long_name" => "Time (UTC), start of interval"])
dsLat[:]=lat
dsLon[:]=lon
# Define a global attribute
dsOut.attrib["title"] = "Awesome gridded file"
# Define gridded variables:
n=zeros(Float32,(length(lat),length(lon)))
SIF = zeros(Float32,(length(lat),length(lon)))
# Parse JSON files as dictionary
jsonDict = JSON.parsefile(ar["Dict"], dicttype=DataStructures.OrderedDict)
#d2 = jsonDict["basic"]
dGrid = jsonDict["grid"]
# Get file naming pattern (needs YYYY MM and DD in there)
fPattern = jsonDict["filePattern"]
# Get main folder for files:
folder = jsonDict["folder"]
NCDict= Dict{String, NCDatasets.CFVariable}()
println("Creating NC datasets in output:")
for (key, value) in dGrid
print(key," ")
NCDict[key] = defVar(dsOut,key,Float32,("time","lon","lat"),deflatelevel=4, fillvalue=-999)
end
ds_ndvi = defVar(dsOut,"NDVI",Float32,("time","lon","lat"),deflatelevel=4, fillvalue=-999)
ds_evi = defVar(dsOut,"EVI",Float32,("time","lon","lat"),deflatelevel=4, fillvalue=-999)
ds_nirv = defVar(dsOut,"NIRv",Float32,("time","lon","lat"),deflatelevel=4, fillvalue=-999)
ds_ndwi = defVar(dsOut,"NDWI",Float32,("time","lon","lat"),deflatelevel=4, fillvalue=-999)
println(" ")
#dSIF = defVar(dsOut,"sif",Float32,("lon","lat"),deflatelevel=4, fillvalue=-999)
dN = defVar(dsOut,"n",Float32,("time","lon","lat"),deflatelevel=4, fillvalue=-999)
# Define data array
# How many additional dataset (here, NDVI, EVI, NIRv and NDWI)
addData = 4
mat_data= zeros(Float32,(addData+1+length(dGrid),length(lon),length(lat)))
mat_in = zeros(Float32,length(dGrid)+1,2400,2400)
ds = Dataset("/home/lyh/test_wholedata.nc","r")
lon_table = ds["longitude"]
lat_table = ds["latitude"]
# Loop through time:
# Time counter
cT = 1
p1 = Progress(cT)
for d in startDate:dDay:stopDate
ProgressMeter.next!(p1; showvalues = [(:Time, d)])
files = String[];
# Step through 8 days here, otherwise overkill
for di in d:Dates.Day(1):d+dDay-Dates.Day(1)
#********* This needs to be updated to use the Day of Year (and not MM and DD)!! *********#
# filePattern = reduce(replace,["YYYY" => lpad(Dates.year(di),4,"0"), "MM" => lpad(Dates.month(di),2,"0"), "DD" => lpad(Dates.day(di),2,"0")], init=fPattern)
filePattern = reduce(replace,["YYYY" => lpad(Dates.year(di),4,"0"), "MM" => lpad(Dates.month(di),2,"0"), "DD" => lpad(Dates.day(di),2,"0"), "DOY" => lpad(Dates.dayofyear(di),3,"0")], init=fPattern)
folderPattern = reduce(replace,["YYYY" => lpad(Dates.year(di),4,"0"), "MM" => lpad(Dates.month(di),2,"0"), "DD" => lpad(Dates.day(di),2,"0")], init=folder)
println(filePattern)
files = [files;glob(filePattern, folderPattern)]
end
#println(files)
# Loop through all files
n = length(files)
p = Progress(n) # minimum update interval: 1 second
for a in files
# Read NC file
try
fin = Dataset(a)
# Check lat/lon first to see what data to read in
#********* Here you need to read in lat/lon from MODIS (table or calculate on the fly) *********#
#lat_in = fin[d2["lat"]].var[:]
#lon_in = fin[d2["lon"]].var[:]
pos_start = findfirst("MCD43A4.A", a)
filename = a[pos_start[1]:end]
h = parse(Int32,filename[19:20])
v = parse(Int32,filename[22:23])
lon_in_ = lon_table[h+1,v+1,:,:]
lat_in_ = lat_table[h+1,v+1,:,:]
# Call the variables lat_in and lon_in and then best
#lat_in_ = fin[d2["lat_bnd"]].var[:]
#lon_in_ = fin[d2["lon_bnd"]].var[:]
#dim = size(lat_in_)
# Get indices within the lat/lon boudning box:
#idx = findall((minLat[:,1].>latMin).&(maxLat[:,1].<latMax).&(minLon[:,1].>lonMin).&(maxLon[:,1].<lonMax))
idx = findall((lat_in_.>latMin).&(lat_in_.<latMax).&(lon_in_.>lonMin).&(lon_in_.<lonMax))
ProgressMeter.next!(p; showvalues = [(:File, a), (:N_pixels, size(idx))])
#println("Size of idx ", size(idx), " lat_in_ ", size(lat_in_))
# Read data only for non-empty indices
if length(idx) > 0
#print(size(lat_in_))
dim = size(mat_in)
# Read in all entries defined in JSON file:
co = 1
# This should just read in the datasets:
for (key, value) in dGrid
#println(key, value)
mat_in[co,:,:]=fin[value].var[:]
co += 1
end
mat_in[end,:,:].=1
# This computes the indices into which the respective lats and lons are falling into.
#iLat_ = ((lat_in[idx].-latMin)/(latMax-latMin)*length(lat)).+1
#iLon_ = ((lon_in[idx].-lonMin)/(lonMax-lonMin)*length(lon)).+1
iLat_ = round.(Int64,((lat_in_[idx].-latMin)/(latMax-latMin)*length(lat)).+0.5.-1e-6,RoundNearestTiesAway)
iLon_ = round.(Int64,((lon_in_[idx].-lonMin)/(lonMax-lonMin)*length(lon)).+0.5.-1e-6,RoundNearestTiesAway)
# Once you have done this, we can chat about the gridding itself (just a few lines of code here)
#@time findUnique(iLon_,iLat_)
aver!(mat_data, mat_in, iLon_,iLat_, idx)
fill!(mat_in,0.0)
#println("Read ", a, " ", length(idx))
else
#println("Read ", a, " ", length(idx))
end
close(fin)
catch e
println(e)
end
end
# Filter all data, set averages
dims = size(mat_data)
println("Averaging final product...")
NN = mat_data[end,:,:]
dN[cT,:,:]=NN
# Write out time:
dsTime[cT]=d
co = 1
thr = 5
for (key, value) in dGrid
da = round.(mat_data[co,:,:]./mat_data[end,:,:],sigdigits=5)
#println(maximum(da), " ", maximum(NN))
#da[NN.<1e-10].=-999
da[NN.<thr].=-999
NCDict[key][cT,:,:]=da
co += 1
end
d = size(mat_in)
println(d)
da = round.(mat_data[d[1],:,:]./mat_data[end,:,:],sigdigits=5)
da[NN.<thr].=-999
ds_evi[cT,:,:] = da
da = round.(mat_data[d[1]+1,:,:]./mat_data[end,:,:],sigdigits=5)
da[NN.<thr].=-999
ds_ndvi[cT,:,:] = da
da = round.(mat_data[d[1]+2,:,:]./mat_data[end,:,:],sigdigits=5)
da[NN.<thr].=-999
ds_nirv[cT,:,:] = da
da = round.(mat_data[d[1]+3,:,:]./mat_data[end,:,:],sigdigits=5)
da[NN.<thr].=-999
ds_ndwi[cT,:,:] = da
cT += 1
fill!(mat_data,0.0)
end
close(dsOut)
close(ds)
end
main()