-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_ours.py
218 lines (186 loc) · 11.2 KB
/
train_ours.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import argparse
from networks.model import GNNModel
from util import *
from losses.supcon import SupConLoss
from sklearn.cluster import KMeans
from sklearn import metrics
import torch
import torch.nn.functional as F
from dgl import save_graphs, load_graphs
def parse_argsion():
parser = argparse.ArgumentParser('argument for training')
parser.add_argument('--device', type=str, default="0",
help='id of the used GPU device (default: 0)')
parser.add_argument('--seed', type=int, default=0,
help='random seed (default: 0)')
parser.add_argument('--encoder_name', type=str, default="gat",
help='name of the used gnn encoder (default: gat)')
# model optimization
parser.add_argument('--batch_size', type=int, default=2048,
help='batch_size for pretrain (default: 2048)')
parser.add_argument('--epochs', type=int, default=20,
help='number of training epochs (default: 20)')
parser.add_argument('--learning_rate', type=float, default=1e-3,
help='learning rate (default: 1e-3)')
parser.add_argument('--weight_decay', type=float, default=1e-4,
help='weight decay')
# dataset and dataset split
parser.add_argument('--dataset', type=str, default='citeseer',
help='dataset (default: citeseer)')
parser.add_argument('--nodes_per_class', type=int, default=50,
help='number of nodes per seen class in the training/validation set (default: 50)')
# gnn hyper-parameters
parser.add_argument('--num_gnn_layers', type=int, default=2,
help='number of layers in graphcnn (not include the input layer)')
parser.add_argument('--hidden_dim', type=int, default=128,
help='dimensionality of hidden units (default: 128)')
parser.add_argument('--num_gnn_heads', type=int, default=8,
help='the number of heads in the GAT layer (default: 8)')
parser.add_argument('--feat_drop_rate', type=float, default=0.5,
help='dropout rate on feature (default: 0.5)')
parser.add_argument('--attn_drop_rate', type=float, default=0.5,
help='dropout rate on attention weight for GAT layer (default: 0.5)')
# loss hyper-parameters
parser.add_argument('--tau', type=float, default=0.7,
help='temperature of contrastive loss')
parser.add_argument('--rho', type=int, default=75,
help='the ratio for filtering')
parser.add_argument('--scale', type=float, default=1.0,
help='the scaling factor of cross entropy')
parser.add_argument('--filter', type=int, default=1,
help='whether use a threshold to filter pseudo-labeled nodes (0 or 1)')
args = parser.parse_args()
return args
def main():
args = parse_argsion()
if args.filter != 0 and args.filter != 1:
raise NotImplementedError(
'false input of args.filter (0 or 1 is required)')
device = torch.device("cuda:" + str(args.device)) if torch.cuda.is_available() else torch.device("cpu")
setup_seed(args.seed)
#------------------------------------------load and prepare the dataset-------------------------------------
g, input_dim, n_class, n_train_class, mask_lab, mask_cls = load_data(args.dataset, args.seed, args.nodes_per_class)
node_list = list(range(g.num_nodes()))
train_idx = np.where(g.ndata["train_mask"].numpy() == True)[0].tolist()
val_test_idx = np.where(g.ndata["val_mask"].numpy() == True)[0].tolist() + np.where(g.ndata["test_mask"].numpy() == True)[0].tolist()
args.input_dim = input_dim
args.filter = bool(args.filter)
args.n_class, args.n_train_class = n_class, n_train_class
feats = g.ndata["feat"].to(device)
development_labels = dict()
for node in train_idx:
development_labels[node] = g.ndata["label"][node].item()
#----------------------------------------prepare the model/loss/optimizer-----------------------------------
model = GNNModel(args).to(device)
classifier = torch.nn.Linear(args.hidden_dim, args.n_class).to(device)
criterion = SupConLoss(device, temperature=args.tau).to(device)
optimizer = torch.optim.Adam([{'params': model.parameters()},
{'params': classifier.parameters()}],
lr = args.learning_rate,
weight_decay=args.weight_decay)
#----------------------------------------------optimize the encoder------------------------------------------
for epoch in range(1, args.epochs+1):
model.train()
classifier.train()
random.shuffle(node_list)
for st in range(0, g.num_nodes(), args.batch_size):
ed = st + args.batch_size
node_id = node_list[st: ed]
batch_labels = list(range(args.n_class, args.n_class+len(node_id)))
batch_labels = np.array([development_labels[node] if node in development_labels.keys() else batch_labels[i] for i, node in enumerate(node_id)])
view1 = model(feats, g.to(device))
view2 = model(feats, g.to(device))
preds1 = classifier(view1)
preds2 = classifier(view2)
# input_feat = torch.reshape(torch.unsqueeze(torch.cat([view1[node_id], view2[node_id]], dim=1), 1), (-1, 2, args.hidden_dim))
# input_preds = torch.reshape(torch.unsqueeze(torch.cat([F.normalize(preds1,dim=1)[node_id], F.normalize(preds2,dim=1)[node_id]], dim=1), 1), (-1, 2, args.n_class))
# input_label = torch.reshape(torch.LongTensor(batch_labels), (-1, 1))
input_feat = torch.cat([view1[node_id].unsqueeze(1), view2[node_id].unsqueeze(1)], dim=1)
input_preds = torch.cat([F.normalize(preds1,dim=1)[node_id].unsqueeze(1), F.normalize(preds2,dim=1)[node_id].unsqueeze(1)], dim=1)
input_label = torch.LongTensor(batch_labels)
if epoch == 1:
# optimize the encoder with InfoNCE loss during the first training epoch
loss = criterion(input_feat)
else:
loss = criterion(input_feat, input_label) + criterion(input_preds, input_label) + args.scale*torch.nn.CrossEntropyLoss()(preds1[train_idx], g.ndata["label"][train_idx].to(device)) + args.scale*torch.nn.CrossEntropyLoss()(preds2[train_idx], g.ndata["label"][train_idx].to(device))
if optimizer is not None:
optimizer.zero_grad()
loss.backward()
optimizer.step()
# perfrom k-means++ and filter the pseudo-labeled nodes
model.eval()
classifier.eval()
with torch.no_grad():
emb = model(feats, g.to(device)).detach().cpu().numpy()
kmeans = KMeans(n_clusters=args.n_class, random_state=args.seed).fit(emb)
if args.filter:
centers = kmeans.cluster_centers_
distance = (np.sum((emb - centers[kmeans.labels_])**2, 1))**0.5
threshold = np.percentile(distance, args.rho)
new_labeled_nodes = [idx for idx in val_test_idx if idx in np.where(distance <= threshold)[0]]
else:
new_labeled_nodes = val_test_idx
# perform Hungarian optimal assignment algorithm
y_pred = kmeans.labels_[mask_lab]
y_true = g.ndata["label"].numpy()[mask_lab]
D = args.n_class
w = np.zeros((D, D), dtype=int)
for i in range(y_pred.size):
w[y_pred[i], y_true[i]] += 1
ind = linear_assignment(w.max() - w)
ind = np.vstack(ind).T
ind_map = {i: j for i, j in ind}
if len(set(ind[:, 0])) != args.n_class:
break
if len(set(ind[:, 1])) != args.n_class:
break
# pseudo-labeling
if len(new_labeled_nodes) > 0:
print("Adding {} pseudo-labeled nodes ...".format(len(new_labeled_nodes)))
# development_labels = dict()
# for node in range(g.num_nodes()):
# if node in train_idx:
# development_labels[node] = g.ndata["label"][node].item()
# if (node in new_labeled_nodes) and (node in val_test_idx):
# development_labels[node] = ind_map[kmeans.labels_[node]]
nodes_pl = list(np.intersect1d(np.array(new_labeled_nodes),np.array(val_test_idx)))
labels_pl = kmeans.labels_[nodes_pl].tolist()
labels_pl = np.array([ind_map[elem] for elem in labels_pl])
development_labels = dict(map(lambda x,y:[x,y], nodes_pl, labels_pl))
for node in train_idx:
development_labels[node] = g.ndata["label"][node].item()
# prediction and evaluation
targets = g.ndata["label"].numpy()
preds = kmeans.labels_
preds = np.array([ind_map[elem] for elem in preds]) # alignment
if len(set(preds[val_test_idx])) == 1:
score = -1
else:
score = metrics.silhouette_score(emb[val_test_idx], preds[val_test_idx])
mask = mask_cls[~mask_lab]
mask = mask.astype(bool)
mask2 = mask_cls[g.ndata["val_mask"]]
mask2 = mask2.astype(bool)
all_acc, old_acc, new_acc = split_cluster_acc_v2(y_true=targets[~mask_lab], y_pred=preds[~mask_lab], mask=mask)
val_acc, _, _ = split_cluster_acc_v2(y_true=targets[g.ndata["val_mask"]], y_pred=preds[g.ndata["val_mask"]], mask=mask2)
print(("val_acc: {:.5f}, all_acc: {:.5f}, old_acc: {:.5f}, new_acc: {:.5f}\n".format(val_acc, all_acc, old_acc, new_acc)))
# compute imbalance rate and separation rate
seen, novel = [], []
for i in range(args.n_train_class):
seen.extend(list(np.where(targets==i)[0]))
seen_variancs, seen_centers = compute_var_mean(emb[seen], targets[seen])
for i in range(args.n_train_class, args.n_class):
novel.extend(list(np.where(targets==i)[0]))
novel_variancs, novel_centers = compute_var_mean(emb[novel], targets[novel])
imbalance_rate = []
separate_rate = []
for var1, center1 in zip(novel_variancs, novel_centers):
for var2, center2 in zip(seen_variancs, seen_centers):
imbalance_rate.append(var1 / var2)
separate_rate.append(np.sum((center1 - center2)**2)**0.5 / (var1 + var2))
# write down the evaluation results
fp=open("./log/{}/res_ours_{}_{}.log".format(args.dataset, args.dataset, args.seed), "a")
fp.write("alpha: {}, tau: {}, labeled_nodes_per_seen_class: {}, lr: {}, scale:{}, pretrain_epochs: {}, score:{:.5f}, val_acc: {:.5f}, all_acc: {:.5f}, old_acc: {:.5f}, new_acc: {:.5f}, imbalance_rate_mean: {:.5f}, separate_rate_mean: {:.5f}, imbalance_rate_min: {:.5f}, separate_rate_min: {:.5f}\n".format(args.rho, args.tau, args.nodes_per_class, args.learning_rate, args.scale, epoch, score, val_acc, all_acc, old_acc, new_acc, np.mean(imbalance_rate), np.mean(separate_rate), np.min(imbalance_rate), np.min(separate_rate)))
fp.close()
if __name__ == '__main__':
main()