-
Notifications
You must be signed in to change notification settings - Fork 7
/
SGS_cst_par_cond.m
210 lines (190 loc) · 7 KB
/
SGS_cst_par_cond.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
%% Constant Path Sequential Gaussian Simulation
% See |SGS.m| for more general information on Sequential Gaussian
% Simulation.
% SGS with a constant path uses a unique path for each realization, thus, it's code
% loop around the realization and the node after. See pseudo-code below
%
%%
function [Rest, t, parm] = SGS_cst_par_cond(nx,ny,m,covar,neigh,parm,hd)
tik.global = tic;
%% 1. Creation of the grid and path
[Y, X] = ndgrid(1:ny,1:nx);
tik.path = tic;
Path = nan(ny,nx);
Path(hd.id) = 0;
rng(parm.seed_path);
if parm.mg
sx = 1:ceil(log(nx+1)/log(2));
sy = 1:ceil(log(ny+1)/log(2));
sn = max([numel(sy), numel(sx)]);
nb = nan(sn,1);
start = zeros(sn+1,1);
ds = 2.^(sn-1:-1:0);
path = nan(sum(isnan(Path(:))),1);
for i_scale = 1:sn
[Y_s,X_s] = ndgrid(1:ds(i_scale):ny,1:ds(i_scale):nx); % matrix coordinate
id = find(isnan(Path(:)) & ismember([Y(:) X(:)], [Y_s(:) X_s(:)], 'rows'));
nb(i_scale) = numel(id);
start(i_scale+1) = start(i_scale)+nb(i_scale);
path( start(i_scale)+(1:nb(i_scale)) ) = id(randperm(nb(i_scale)));
Path(path( start(i_scale)+(1:nb(i_scale)) )) = start(i_scale)+(1:nb(i_scale));
% Find the scaloe of hard data.
hd.scale( ismember([hd.y hd.x], [Y_s(:) X_s(:)],'rows') & isnan(hd.scale)) =i_scale;
end
else
id=find(isnan(Path));
path = id(randperm(numel(id)));
Path(path) = 1:numel(id);
ds=1; nb = numel(id); start=[0 nb]; sn=1;
end
t.path = toc(tik.path);
%% 2. Initialization Spiral Search
% Initialize spiral search stuff which don't change
x = ceil( min(covar(1).range(2)*neigh.wradius, nx));
y = ceil( min(covar(1).range(1)*neigh.wradius, ny));
[ss_Y, ss_X] = ndgrid(-y:y, -x:x);% grid{i_scale} of searching windows
ss_dist = sqrt( (ss_X/covar(1).range(2)).^2 + (ss_Y/covar(1).range(1)).^2); % find distence
ss_id_1 = find(ss_dist <= neigh.wradius); % filter node behind radius.
rng(parm.seed_search);
ss_id_1 = ss_id_1(randperm(numel(ss_id_1)));
[ss_dist_s, ss_id_2] = sort(ss_dist(ss_id_1)); % sort according distence.
ss_X_s=ss_X(ss_id_1(ss_id_2)); % sort the axis
ss_Y_s=ss_Y(ss_id_1(ss_id_2));
ss_n=numel(ss_X_s); %number of possible neigh
if parm.mg
ss_scale=sn*ones(size(ss_X));
for i_scale = sn-1:-1:1
x_s = [-fliplr(ds(i_scale):ds(i_scale):x(end)) 0 ds(i_scale):ds(i_scale):x(end)]+(x+1);
y_s = [-fliplr(ds(i_scale):ds(i_scale):y(end)) 0 ds(i_scale):ds(i_scale):y(end)]+(y+1);
ss_scale(y_s,x_s)=i_scale;
end
ss_scale_s = ss_scale(ss_id_1(ss_id_2));
else
ss_scale_s = sn*ones(size(ss_id_2));
end
%% 3. Initialization Covariance Lookup Table
if neigh.lookup
ss_a0_C = zeros(ss_n,1);
ss_ab_C = zeros(ss_n);
for i=1:numel(covar)
a0_h = sqrt(sum(([ss_Y_s(:) ss_X_s(:)]*covar(i).cx).^2,2));
ab_h = squareform(pdist([ss_Y_s ss_X_s]*covar(i).cx));
ss_a0_C = ss_a0_C + kron(covar(i).g(a0_h), covar(i).c0);
ss_ab_C = ss_ab_C + kron(covar(i).g(ab_h), covar(i).c0);
end
end
%% 4. Initizialization of the kriging weights and variance error
tik.weight = tic;
NEIGH = nan(nx*ny,neigh.nb);
% NEIGH_1 = nan(nx*ny,neigh.nb);
% NEIGH_2 = nan(nx*ny,neigh.nb);
LAMBDA = nan(nx*ny,neigh.nb);
S = nan(nx*ny,1);
XY_i=[Y(path) X(path)];
%% 5 Loop of scale for multi-grid path
for i_scale = 1:sn
%% 5.1 Initializsed the search table of neighbors for the scale
ss_id = find(ss_scale_s<=i_scale);
ss_XY_s_s = [ss_Y_s(ss_id) ss_X_s(ss_id)];
ss_dist_s_s = ss_dist_s(ss_id);
if neigh.lookup
ss_a0_C_s = ss_a0_C(ss_id);
ss_ab_C_s = ss_ab_C(ss_id,ss_id);
else
ss_a0_C_s=[];
ss_ab_C_s=[];
end
%% 5.2 Remove hard data which are on the current scale
hd_XY_s = [hd.y(hd.scale>i_scale) hd.x(hd.scale>i_scale)];
%% 5.3 Loop of simulated node
parfor i_pt = start(i_scale)+(1:nb(i_scale))
%% 5.3.1 Hard data
hd_XY_d = bsxfun(@minus,hd_XY_s,XY_i(i_pt,:));
hd_XY_d = hd_XY_d(hd_XY_d(:,1)<covar(1).range(1)*neigh.wradius & hd_XY_d(:,2)<covar(1).range(2)*neigh.wradius,:);
hd_dist=zeros(size(hd_XY_d,1),1);
for i=1:numel(covar)
hd_dist=hd_dist+sqrt(sum((hd_XY_d*covar(i).cx).^2,2));
end
[~, ss_hd_id] = sort( [ hd_dist; ss_dist_s_s]);
tmp = [hd_XY_d; ss_XY_s_s];
ss_hd_XY_s_s = tmp(ss_hd_id,:);
%% 5.3.2 Neighborhood search
n=0;
neigh_nn=nan(neigh.nb,1);
NEIGH_1 = nan(neigh.nb,1);
NEIGH_2 = nan(neigh.nb,1);
for nn = 2:size(ss_hd_XY_s_s,1) % 1 is the point itself... therefore unknown
ijt = XY_i(i_pt,:) + ss_hd_XY_s_s(nn,:);
if ijt(1)>0 && ijt(2)>0 && ijt(1)<=ny && ijt(2)<=nx
if Path(ijt(1),ijt(2)) < i_pt % check if it,jt exist
n=n+1;
neigh_nn(n) = nn;
NEIGH_1(n) = ijt(1);
NEIGH_2(n) = ijt(2);
if n >= neigh.nb
break;
end
end
end
end
%% 5.3.3 Kriging system solving and storing of weights
if n==0
S(i_pt) = sum([covar.c0]);
else
NEIGH(i_pt,:) = NEIGH_1 + (NEIGH_2-1)* ny;
if neigh.lookup
a0_C = ss_a0_C_s(neigh_nn(1:n));
ab_C = ss_ab_C_s(neigh_nn(1:n), neigh_nn(1:n));
else
D = pdist([0 0; ss_hd_XY_s_s(neigh_nn(1:n),:)]*covar.cx);
C = covar.g(D);
if n==1
a0_C = C;
ab_C = 1;
else
a0_C = C(1:n)';
% Equivalent to : squareform(C(n+1:end));
ab_C = diag(ones(n,1))*0.5;
ab_C(tril(true(n),-1)) = C(n+1:end);
ab_C = ab_C + ab_C';
end
end
l = ab_C \ a0_C;
LAMBDA(i_pt,:) = [l; nan(neigh.nb-n,1) ]';
S(i_pt) = sum([covar.c0]) - l'*a0_C;
end
end
% disp(['scale: ' num2str(i_scale) '/' num2str(sn)])
end
t.weight = toc(tik.weight);
if parm.saveit
filename=['result-SGS/SIM-', parm.name ,'_', datestr(now,'yyyy-mm-dd_HH-MM-SS'), '.mat'];
mkdir('result-SGS/')
save(filename, 'parm', 'nx','ny','start','nb', 'path', 'sn', 'k','NEIGH','S','LAMBDA')
end
%% 6. Realization loop
tik.real = tic;
Rest = nan(ny,nx,m);
parm_seed_U = parm.seed_U;
parfor i_real=1:m
Res=nan(ny,nx);
Res(hd.id)=hd.d;
rng(parm_seed_U);
U=randn(ny,nx);
%% 6.1 Loop over scale and node for simulation
for i_scale = 1:sn
for i_pt = start(i_scale)+(1:nb(i_scale))
n = ~isnan(NEIGH(i_pt,:));
Res(path(i_pt)) = LAMBDA(i_pt,n)*Res(NEIGH(i_pt,n))' + U(i_pt)*sqrt(S(i_pt));
end
end
Rest(:,:,i_real) = Res;
end
if parm.saveit
filename=['result-SGS/SIM-', parm.name ,'_', datestr(now,'yyyy-mm-dd_HH-MM-SS'), '.mat'];
mkdir('result-SGS/')
save(filename, 'parm','nx','ny', 'Rest', 't', 'k','U')
end
t.real = toc(tik.real);
t.global = toc(tik.global);
end