-
Notifications
You must be signed in to change notification settings - Fork 2
/
glue_utils.py
523 lines (474 loc) · 20.9 KB
/
glue_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" BERT classification fine-tuning: utilities to work with GLUE tasks """
from __future__ import absolute_import, division, print_function
import csv
import logging
import os
import sys
from io import open
from seq_utils import *
logger = logging.getLogger(__name__)
SMALL_POSITIVE_CONST = 1e-4
class InputExample(object):
"""A single training/test example for simple sequence classification."""
def __init__(self, guid, text_a, text_b=None, label=None):
"""Constructs a InputExample.
Args:
guid: Unique id for the example.
text_a: string. The untokenized text of the first sequence. For single
sequence tasks, only this sequence must be specified.
text_b: (Optional) string. The untokenized text of the second sequence.
Only must be specified for sequence pair tasks.
label: (Optional) string. The label of the example. This should be
specified for train and dev examples, but not for test examples.
"""
self.guid = guid
self.text_a = text_a
self.text_b = text_b
self.label = label
def copy(self):
return InputExample(self.guid, self.text_a, self.text_b, self.label)
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self, input_ids, input_mask, segment_ids, label_id):
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.label_id = label_id
class SeqInputFeatures(object):
"""A single set of features of data for the ABSA task"""
def __init__(self, input_ids, input_mask, segment_ids, label_ids, label_ids_1, label_ids_o, stm_lm_labels, evaluate_label_ids, label_sent):
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.label_ids = label_ids
self.label_ids_1 = label_ids_1
self.label_ids_o = label_ids_o
self.stm_lm_labels = stm_lm_labels
self.label_sent = label_sent
# mapping between word index and head token index
self.evaluate_label_ids = evaluate_label_ids
class DataProcessor(object):
"""Base class for data converters for sequence classification data sets."""
def get_train_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the train set."""
raise NotImplementedError()
def get_dev_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the dev set."""
raise NotImplementedError()
def get_test_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the test set."""
raise NotImplementedError()
def get_labels(self):
"""Gets the list of labels for this data set."""
raise NotImplementedError()
@classmethod
def _read_tsv(cls, input_file, quotechar=None):
"""Reads a tab separated value file."""
with open(input_file, "r", encoding="utf-8-sig") as f:
reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
lines = []
for line in reader:
if sys.version_info[0] == 2:
line = list(cell for cell in line)
lines.append(line)
return lines
class ABSAProcessor(DataProcessor):
"""Processor for the ABSA datasets"""
def get_train_examples(self, data_dir, tagging_schema):
return self._create_examples(data_dir=data_dir, set_type='train', tagging_schema=tagging_schema)
def get_dev_examples(self, data_dir, tagging_schema):
return self._create_examples(data_dir=data_dir, set_type='dev', tagging_schema=tagging_schema)
def get_test_examples(self, data_dir, tagging_schema):
return self._create_examples(data_dir=data_dir, set_type='test', tagging_schema=tagging_schema)
def get_labels(self, tagging_schema):
if tagging_schema == 'OT':
return []
elif tagging_schema == 'BIO':
return ['O', 'B-POS', 'I-POS', 'B-NEG', 'I-NEG', 'B-NEU', 'I-NEU']
elif tagging_schema == 'BIEOS':
return ['O', 'B-POS', 'I-POS', 'E-POS', 'S-POS',
'B-NEG', 'I-NEG', 'E-NEG', 'S-NEG',
'B-NEU', 'I-NEU', 'E-NEU', 'S-NEU']
else:
raise Exception("Invalid tagging schema %s..." % tagging_schema)
def get_normal_labels(self, tagging_schema):
if tagging_schema == 'OT':
return []
elif tagging_schema == 'BIO':
return ['O', 'B', 'I']
elif tagging_schema == 'BIEOS':
return ['O', 'B', 'I', 'E', 'S']
else:
raise Exception("Invalid tagging schema %s..." % tagging_schema)
@staticmethod
def get_sentiment_labels():
return ['O', 'POS', 'NEG', 'NEU']
def _create_examples(self, data_dir, set_type, tagging_schema):
examples = []
file = os.path.join(data_dir, "%s.txt" % set_type)
class_count = np.zeros(3)
with open(file, 'r', encoding='UTF-8') as fp:
sample_id = 0
for line in fp:
sent_string, tag_string = line.strip().split('####')
words = []
tags = []
for tag_item in tag_string.split(' '):
eles = tag_item.split('=')
if len(eles) == 1:
raise Exception("Invalid samples %s..." % tag_string)
elif len(eles) == 2:
word, tag = eles
else:
word = ''.join((len(eles) - 2) * ['='])
tag = eles[-1]
words.append(word)
tags.append(tag)
# convert from ot to bieos
if tagging_schema == 'BIEOS':
tags = ot2bieos_ts(tags)
elif tagging_schema == 'BIO':
tags = ot2bio_ts(tags)
else:
# original tags follow the OT tagging schema, do nothing
pass
guid = "%s-%s" % (set_type, sample_id)
text_a = ' '.join(words)
#label = [absa_label_vocab[tag] for tag in tags]
gold_ts = tag2ts(ts_tag_sequence=tags)
for (b, e, s) in gold_ts:
if s == 'POS':
class_count[0] += 1
if s == 'NEG':
class_count[1] += 1
if s == 'NEU':
class_count[2] += 1
examples.append(InputExample(guid=guid, text_a=text_a, text_b=None, label=tags))
sample_id += 1
print("%s class count: %s" % (set_type, class_count))
return examples
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
"""Truncates a sequence pair in place to the maximum length."""
# This is a simple heuristic which will always truncate the longer sequence
# one token at a time. This makes more sense than truncating an equal percent
# of tokens from each, since if one sequence is very short then each token
# that's truncated likely contains more information than a longer sequence.
while True:
total_length = len(tokens_a) + len(tokens_b)
if total_length <= max_length:
break
if len(tokens_a) > len(tokens_b):
tokens_a.pop()
else:
tokens_b.pop()
def read_lexicon():
"""
read sentiment lexicon from the disk
:return:
"""
path = 'mpqa_full.txt'
sent_lexicon = {}
with open(path) as fp:
for line in fp:
word, polarity = line.strip().split('\t')
if word not in sent_lexicon:
sent_lexicon[word] = polarity
return sent_lexicon
def convert_examples_to_seq_features(examples, label_list, tokenizer,
cls_token_at_end=False, pad_on_left=False, cls_token='[CLS]',
sep_token='[SEP]', pad_token=0, sequence_a_segment_id=0,
sequence_b_segment_id=1, cls_token_segment_id=1, pad_token_segment_id=0,
mask_padding_with_zero=True, stm_win=3):
# feature extraction for sequence labeling
label_map = {label: i for i, label in enumerate(label_list[0])}
label_map_1 = {label: i for i, label in enumerate(label_list[1])}
sentiment_map = {label: i for i, label in enumerate(ABSAProcessor.get_sentiment_labels())}
features = []
max_seq_length = -1
examples_tokenized = []
stm_lex = read_lexicon()
imp_words = []
for (ex_index, example) in enumerate(examples):
tokens_a = []
labels_a = []
labels_a_1 = []
labels_o = []
stm_lm_labels = []
evaluate_label_ids = []
words = example.text_a.split(' ')
wid, tid = 0, 0
op_tags = []
op_labels = []
for j in range(len(words)):
# left boundary of sentimental context
stm_ctx_lb = j - stm_win
if stm_ctx_lb < 0:
stm_ctx_lb = 0
stm_ctx_rb = j + stm_win + 1
left_ctx = words[stm_ctx_lb:j]
right_ctx = words[j+1:stm_ctx_rb]
stm_ctx = left_ctx + right_ctx
flag = 0
for w in stm_ctx:
if w in stm_lex:
flag = 1
break
if words[j] in stm_lex:
if j > 0 and op_labels[-1] != 'O':
op_labels.append('I')
else:
op_labels.append('B')
else:
op_labels.append('O')
op_tags.append(flag)
positions = []
for word, label, op_tag, op_label in zip(words, example.label, op_tags, op_labels):
subwords = tokenizer.tokenize(word)
tokens_a.extend(subwords)
stm_lm_labels.extend([op_tag] * len(subwords))
if label[0] == 'B':
tmp = 'I' + label[1:]
labels_a.extend([label] + [tmp] * (len(subwords) - 1))
labels_a_1.extend([label[0]] + [tmp[0]] * (len(subwords) - 1))
else:
labels_a.extend([label] * (len(subwords)))
labels_a_1.extend([label[0]] * (len(subwords)))
if len(subwords) == 1 and (label[0] != 'O' or op_label != 'O'):
positions.append((tid + 1, wid))
if op_label == 'B':
labels_o.extend([op_label] + ['I'] * (len(subwords) - 1))
else:
labels_o.extend([op_label] * len(subwords))
evaluate_label_ids.append(tid)
wid += 1
# move the token pointer
tid += len(subwords)
imp_words.append(positions)
assert tid == len(tokens_a)
evaluate_label_ids = np.array(evaluate_label_ids, dtype=np.int32)
examples_tokenized.append((tokens_a, labels_a, labels_a_1, stm_lm_labels, labels_o, evaluate_label_ids))
if len(tokens_a) > max_seq_length:
max_seq_length = len(tokens_a)
# count on the [CLS] and [SEP]
max_seq_length += 2
# max_seq_length = 128
for ex_index, (tokens_a, labels_a, labels_a_1, stm_lm_labels, labels_o, evaluate_label_ids) in enumerate(examples_tokenized):
# Add sep token
tokens = tokens_a + [sep_token]
segment_ids = [sequence_a_segment_id] * len(tokens)
labels = labels_a + ['O']
labels_1 = labels_a_1 + ['O']
stm_lm_labels = stm_lm_labels + [0]
labels_o = labels_o + ['O']
if cls_token_at_end:
# evaluate label ids not change
tokens = tokens + [cls_token]
segment_ids = segment_ids + [cls_token_segment_id]
labels = labels + ['O']
labels_1 = labels_1 + ['O']
labels_o = labels_o + ['O']
stm_lm_labels = stm_lm_labels + [0]
else:
# right shift 1 for evaluate label ids
tokens = [cls_token] + tokens
segment_ids = [cls_token_segment_id] + segment_ids
labels = ['O'] + labels
labels_1 = ['O'] + labels_1
labels_o = ['O'] + labels_o
stm_lm_labels = [0] + stm_lm_labels
evaluate_label_ids += 1
input_ids = tokenizer.convert_tokens_to_ids(tokens)
input_mask = [1 if mask_padding_with_zero else 0] * len(input_ids)
# Zero-pad up to the sequence length.
padding_length = max_seq_length - len(input_ids)
#print("Current labels:", labels)
label_ids = [label_map[label] for label in labels]
label_ids_1 = [label_map_1[label] for label in labels_1]
label_ids_o = [label_map_1[label] for label in labels_o]
label_sent = [sentiment_map[label[-3:]] for label in labels]
# pad the input sequence and the mask sequence
if pad_on_left:
input_ids = ([pad_token] * padding_length) + input_ids
input_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask
segment_ids = ([pad_token_segment_id] * padding_length) + segment_ids
# pad sequence tag 'O'
label_ids = ([0] * padding_length) + label_ids
label_ids_1 = ([0] * padding_length) + label_ids_1
label_ids_o = ([0] * padding_length) + label_ids_o
stm_lm_labels = ([0] * padding_length) + stm_lm_labels
label_sent = ([0] * padding_length) + label_sent
# right shift padding_length for evaluate_label_ids
evaluate_label_ids += padding_length
else:
# evaluate ids not change
input_ids = input_ids + ([pad_token] * padding_length)
input_mask = input_mask + ([0 if mask_padding_with_zero else 1] * padding_length)
segment_ids = segment_ids + ([pad_token_segment_id] * padding_length)
# pad sequence tag 'O'
label_ids = label_ids + ([0] * padding_length)
label_ids_1 = label_ids_1 + ([0] * padding_length)
label_ids_o = label_ids_o + ([0] * padding_length)
stm_lm_labels = stm_lm_labels + ([0] * padding_length)
label_sent = label_sent + ([0] * padding_length)
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
assert len(label_ids) == max_seq_length
assert len(label_ids_1) == max_seq_length
assert len(label_ids_o) == max_seq_length
assert len(stm_lm_labels) == max_seq_length
assert len(label_sent) == max_seq_length
features.append(
SeqInputFeatures(input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
label_ids=label_ids,
label_ids_1=label_ids_1,
label_ids_o=label_ids_o,
stm_lm_labels=stm_lm_labels,
evaluate_label_ids=evaluate_label_ids,
label_sent=label_sent))
return features, imp_words
def match_ts(gold_ts_sequence, pred_ts_sequence):
"""
calculate the number of correctly predicted targeted sentiment
:param gold_ts_sequence: gold standard targeted sentiment sequence
:param pred_ts_sequence: predicted targeted sentiment sequence
:return:
"""
# positive, negative and neutral
tag2tagid = {'POS': 0, 'NEG': 1, 'NEU': 2}
hit_count, gold_count, pred_count = np.zeros(3), np.zeros(3), np.zeros(3)
for t in gold_ts_sequence:
#print(t)
ts_tag = t[2]
tid = tag2tagid[ts_tag]
gold_count[tid] += 1
for t in pred_ts_sequence:
ts_tag = t[2]
tid = tag2tagid[ts_tag]
if t in gold_ts_sequence:
hit_count[tid] += 1
pred_count[tid] += 1
return hit_count, gold_count, pred_count
def compute_metrics_absa(preds, labels, all_evaluate_label_ids, tagging_schema):
if tagging_schema == 'BIEOS':
absa_label_vocab = {'O': 0, 'B-POS': 1, 'I-POS': 2, 'E-POS': 3, 'S-POS': 4,
'B-NEG': 5, 'I-NEG': 6, 'E-NEG': 7, 'S-NEG': 8,
'B-NEU': 9, 'I-NEU': 10, 'E-NEU': 11, 'S-NEU': 12}
elif tagging_schema == 'BIO':
absa_label_vocab = {'O': 0, 'B-POS': 1, 'I-POS': 2,
'B-NEG': 3, 'I-NEG': 4, 'B-NEU': 5, 'I-NEU': 6}
elif tagging_schema == 'OT':
absa_label_vocab = {'O': 0, 'T-POS': 1, 'T-NEG': 2, 'T-NEU': 3}
else:
raise Exception("Invalid tagging schema %s..." % tagging_schema)
absa_id2tag = {}
for k in absa_label_vocab:
v = absa_label_vocab[k]
absa_id2tag[v] = k
# number of true postive, gold standard, predicted targeted sentiment
n_tp_ts, n_gold_ts, n_pred_ts = np.zeros(3), np.zeros(3), np.zeros(3)
# precision, recall and f1 for aspect-based sentiment analysis
ts_precision, ts_recall, ts_f1 = np.zeros(3), np.zeros(3), np.zeros(3)
n_samples = len(all_evaluate_label_ids)
pred_y, gold_y = [], []
class_count = np.zeros(3)
tagging = []
for i in range(n_samples):
evaluate_label_ids = all_evaluate_label_ids[i]
pred_labels = preds[i][evaluate_label_ids]
gold_labels = labels[i][evaluate_label_ids]
assert len(pred_labels) == len(gold_labels)
# here, no EQ tag will be induced
pred_tags = [absa_id2tag[label] for label in pred_labels]
gold_tags = [absa_id2tag[label] for label in gold_labels]
if tagging_schema == 'OT':
gold_tags = ot2bieos_ts(gold_tags)
pred_tags = ot2bieos_ts(pred_tags)
elif tagging_schema == 'BIO':
gold_tags = ot2bieos_ts(bio2ot_ts(gold_tags))
pred_tags = ot2bieos_ts(bio2ot_ts(pred_tags))
else:
# current tagging schema is BIEOS, do nothing
pass
g_ts_sequence, p_ts_sequence = tag2ts(ts_tag_sequence=gold_tags), tag2ts(ts_tag_sequence=pred_tags)
hit_ts_count, gold_ts_count, pred_ts_count = match_ts(gold_ts_sequence=g_ts_sequence,
pred_ts_sequence=p_ts_sequence)
n_tp_ts += hit_ts_count
n_gold_ts += gold_ts_count
n_pred_ts += pred_ts_count
for (b, e, s) in g_ts_sequence:
if s == 'POS':
class_count[0] += 1
if s == 'NEG':
class_count[1] += 1
if s == 'NEU':
class_count[2] += 1
tagging.append((g_ts_sequence, p_ts_sequence))
for i in range(3):
n_ts = n_tp_ts[i]
n_g_ts = n_gold_ts[i]
n_p_ts = n_pred_ts[i]
ts_precision[i] = float(n_ts) / float(n_p_ts + SMALL_POSITIVE_CONST)
ts_recall[i] = float(n_ts) / float(n_g_ts + SMALL_POSITIVE_CONST)
ts_f1[i] = 2 * ts_precision[i] * ts_recall[i] / (ts_precision[i] + ts_recall[i] + SMALL_POSITIVE_CONST)
macro_f1 = ts_f1.mean()
# calculate micro-average scores for ts task
# TP
n_tp_total = sum(n_tp_ts)
# TP + FN
n_g_total = sum(n_gold_ts)
print("class_count:", class_count)
# TP + FP
n_p_total = sum(n_pred_ts)
micro_p = float(n_tp_total) / (n_p_total + SMALL_POSITIVE_CONST)
micro_r = float(n_tp_total) / (n_g_total + SMALL_POSITIVE_CONST)
micro_f1 = 2 * micro_p * micro_r / (micro_p + micro_r + SMALL_POSITIVE_CONST)
scores = {'macro-f1': macro_f1, 'precision': micro_p, "recall": micro_r, "micro-f1": micro_f1}
return scores, tagging
processors = {
"laptop14": ABSAProcessor,
"rest_total": ABSAProcessor,
"rest_total_revised": ABSAProcessor,
"rest14": ABSAProcessor,
"rest15": ABSAProcessor,
"rest16": ABSAProcessor,
"rest_total_adv": ABSAProcessor,
"laptop14_adv": ABSAProcessor
}
output_modes = {
"cola": "classification",
"mnli": "classification",
"mnli-mm": "classification",
"mrpc": "classification",
"sst-2": "classification",
"sts-b": "regression",
"qqp": "classification",
"qnli": "classification",
"rte": "classification",
"wnli": "classification",
"laptop14": "classification",
"rest_total": "classification",
"rest14": "classification",
"rest15": "classification",
"rest16": "classification",
"rest_total_revised": "classification",
"rest_total_adv": "classification",
"laptop14_adv": "classification"
}