-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathinference.py
95 lines (75 loc) · 3.5 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
#!/usr/bin/env python3
"""
Copyright (c) 2018 Intel Corporation.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
"""
import os
import sys
import logging as log
from openvino.inference_engine import IENetwork, IECore
class Network:
def __init__(self):
self.net = None
ie = None
self.input_blob = None
self.out_blob = None
self.net_plugin = None
self.infer_request_handle = None
def load_model(self, model, device, input_size, output_size, num_requests, extn=None):
model_xml = model
model_bin = os.path.splitext(model_xml)[0] + ".bin"
log.info("Creating Inference Engine...")
ie = IECore()
if extn and 'CPU' in device:
ie.add_extension(extn, "CPU")
# Read IR
log.info("Reading IR...")
self.net = IENetwork(model=model_xml, weights=model_bin)
if "CPU" in device:
supported_layers = ie.query_network(self.net, "CPU")
not_supported_layers = [l for l in self.net.layers.keys() if l not in supported_layers]
if len(not_supported_layers) != 0:
sys.exit(1)
if num_requests == 0:
self.net_plugin = ie.load_network(network=self.net, device_name=device)
else:
self.net_plugin = ie.load_network(network=self.net, device_name=device, num_requests=num_requests)
self.input_blob = next(iter(self.net.inputs))
self.out_blob = next(iter(self.net.outputs))
assert len(self.net.inputs.keys()) == input_size, \
"Supports only {} input topologies".format(len(self.net.inputs))
assert len(self.net.outputs) == output_size, \
"Supports only {} output topologies".format(len(self.net.outputs))
return ie, self.get_input_shape()
def get_input_shape(self):
return self.net.inputs[self.input_blob].shape
def exec_net(self, request_id, frame):
self.infer_request_handle = self.net_plugin.start_async(request_id=request_id, inputs={self.input_blob: frame})
return self.net_plugin
def wait(self, request_id):
infer_status = self.net_plugin.requests[request_id].wait(-1)
return infer_status
def get_output(self, request_id, output=None):
if output:
res = self.infer_request_handle.outputs[output]
else:
res = self.net_plugin.requests[request_id].outputs[self.out_blob]
return res
def clean(self):
del self.net_plugin
del self.net