-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathUNet.py
192 lines (178 loc) · 9.62 KB
/
UNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import numpy as np
import torch
import torch.nn as nn
class gated_resnet(nn.Module):
def __init__(self, num_filters, kernel_size, padding, nonlinearity=nn.ReLU, dropout=0.2, dilation=1,batchNormObject=nn.BatchNorm2d):
super(gated_resnet, self).__init__()
self.gated = True
num_hidden_filters =2 * num_filters if gated else num_filters
self.conv_input = nn.Conv2d(num_filters, num_hidden_filters, kernel_size=kernel_size,stride=1,padding=padding,dilation=dilation )
self.dropout = nn.Dropout2d(dropout)
self.nonlinearity = nonlinearity()
self.batch_norm1 = batchNormObject(num_hidden_filters)
self.conv_out = nn.Conv2d(num_hidden_filters, num_hidden_filters, kernel_size=kernel_size,stride=1,padding=padding,dilation=dilation )
self.batch_norm2 = batchNormObject(num_filters)
def forward(self, og_x):
x = self.conv_input(og_x)
x = self.batch_norm1(x)
x = self.nonlinearity(x)
x = self.dropout(x)
x = self.conv_out(x)
if self.gated:
a, b = torch.chunk(x, 2, dim=1)
c3 = a * F.sigmoid(b)
else:
c3 = x
out = og_x + c3
out = self.batch_norm2(out)
return out
class ResidualBlock(nn.Module):
def __init__(self, num_filters, kernel_size, padding, nonlinearity=nn.ReLU, dropout=0.2, dilation=1,batchNormObject=nn.BatchNorm2d):
super(ResidualBlock, self).__init__()
num_hidden_filters = num_filters
self.conv1 = nn.Conv2d(num_filters, num_hidden_filters, kernel_size=kernel_size,stride=1,padding=padding,dilation=dilation )
self.dropout = nn.Dropout2d(dropout)
self.nonlinearity = nonlinearity(inplace=False)
self.batch_norm1 = batchNormObject(num_hidden_filters)
self.conv2 = nn.Conv2d(num_hidden_filters, num_hidden_filters, kernel_size=kernel_size,stride=1,padding=padding,dilation=dilation )
self.batch_norm2 = batchNormObject(num_filters)
def forward(self, og_x):
x = og_x
x = self.dropout(x)
x = self.conv1(og_x)
x = self.batch_norm1(x)
x = self.nonlinearity(x)
x = self.conv2(x)
out = og_x + x
out = self.batch_norm2(out)
out = self.nonlinearity(out)
return out
class ConvolutionalEncoder(nn.Module):
def __init__(self,n_features_input,num_hidden_features,kernel_size,padding,n_resblocks,dropout_min=0,dropout_max=0.2, blockObject=ResidualBlock,batchNormObject=nn.BatchNorm2d):
super(ConvolutionalEncoder,self).__init__()
self.n_features_input = n_features_input
self.num_hidden_features = num_hidden_features
self.stages = nn.ModuleList()
dropout = iter([(1-t)*dropout_min + t*dropout_max for t in np.linspace(0,1,(len(num_hidden_features)))])
dropout = iter(dropout)
# input convolution block
block = [nn.Conv2d(n_features_input, num_hidden_features[0], kernel_size=kernel_size,stride=1, padding=padding)]
for _ in range(n_resblocks):
p = next(iter(dropout))
block += [blockObject(num_hidden_features[0], kernel_size, padding, dropout=p,batchNormObject=batchNormObject)]
self.stages.append(nn.Sequential(*block))
# layers
for features_in,features_out in [num_hidden_features[i:i+2] for i in range(0,len(num_hidden_features), 1)][:-1]:
# downsampling
block = [nn.MaxPool2d(2),nn.Conv2d(features_in, features_out, kernel_size=1,padding=0 ),batchNormObject(features_out),nn.ReLU()]
#block = [nn.Conv2d(features_in, features_out, kernel_size=kernel_size,stride=2,padding=padding ),nn.BatchNorm2d(features_out),nn.ReLU()]
# residual blocks
p = next(iter(dropout))
for _ in range(n_resblocks):
block += [blockObject(features_out, kernel_size, padding, dropout=p,batchNormObject=batchNormObject)]
self.stages.append(nn.Sequential(*block))
def forward(self,x):
skips = []
for stage in self.stages:
x = stage(x)
skips.append(x)
return x,skips
def getInputShape(self):
return (-1,self.n_features_input,-1,-1)
def getOutputShape(self):
return (-1,self.num_hidden_features[-1], -1,-1)
class ConvolutionalDecoder(nn.Module):
def __init__(self,n_features_output,num_hidden_features,kernel_size,padding,n_resblocks,dropout_min=0,dropout_max=0.2,blockObject=ResidualBlock,batchNormObject=nn.BatchNorm2d):
super(ConvolutionalDecoder,self).__init__()
self.n_features_output = n_features_output
self.num_hidden_features = num_hidden_features
self.upConvolutions = nn.ModuleList()
self.skipMergers = nn.ModuleList()
self.residualBlocks = nn.ModuleList()
dropout = iter([(1-t)*dropout_min + t*dropout_max for t in np.linspace(0,1,(len(num_hidden_features)))][::-1])
# input convolution block
# layers
for features_in,features_out in [num_hidden_features[i:i+2] for i in range(0,len(num_hidden_features), 1)][:-1]:
# downsampling
self.upConvolutions.append(nn.Sequential(nn.ConvTranspose2d(features_in, features_out, kernel_size=3, stride=2,padding=1,output_padding=1),batchNormObject(features_out),nn.ReLU()))
self.skipMergers.append(nn.Conv2d(2*features_out, features_out, kernel_size=kernel_size,stride=1, padding=padding))
# residual blocks
block = []
p = next(iter(dropout))
for _ in range(n_resblocks):
block += [blockObject(features_out, kernel_size, padding, dropout=p,batchNormObject=batchNormObject)]
self.residualBlocks.append(nn.Sequential(*block))
# output convolution block
block = [nn.Conv2d(num_hidden_features[-1],n_features_output, kernel_size=kernel_size,stride=1, padding=padding)]
self.output_convolution = nn.Sequential(*block)
def forward(self,x, skips):
for up,merge,conv,skip in zip(self.upConvolutions,self.skipMergers, self.residualBlocks,skips):
x = up(x)
cat = torch.cat([x,skip],1)
x = merge(cat)
x = conv(x)
return self.output_convolution(x)
def getInputShape(self):
return (-1,self.num_hidden_features[0],-1,-1)
def getOutputShape(self):
return (-1,self.n_features_output, -1,-1)
class DilatedConvolutions(nn.Module):
def __init__(self, n_channels, n_convolutions, dropout):
super(DilatedConvolutions, self).__init__()
kernel_size = 3
padding = 1
self.dropout = nn.Dropout2d(dropout)
self.non_linearity = nn.ReLU(inplace=True)
self.strides = [2**(k+1) for k in range(n_convolutions)]
convs = [nn.Conv2d(n_channels, n_channels, kernel_size=kernel_size,dilation=s, padding=s) for s in self.strides ]
self.convs = nn.ModuleList()
self.bns = nn.ModuleList()
for c in convs:
self.convs.append(c)
self.bns.append(nn.BatchNorm2d(n_channels))
def forward(self,x):
skips = []
for (c,bn,s) in zip(self.convs,self.bns,self.strides):
x_in = x
x = c(x)
x = bn(x)
x = self.non_linearity(x)
x = self.dropout(x)
x = x_in + x
skips.append(x)
return x,skips
class DilatedConvolutions2(nn.Module):
def __init__(self, n_channels, n_convolutions,dropout,kernel_size,blockObject=ResidualBlock,batchNormObject=nn.BatchNorm2d):
super(DilatedConvolutions2, self).__init__()
self.dilatations = [2**(k+1) for k in range(n_convolutions)]
self.blocks = nn.ModuleList([blockObject(n_channels, kernel_size, d, dropout=dropout, dilation=d,batchNormObject=batchNormObject) for d in self.dilatations ])
def forward(self,x):
skips = []
for b in self.blocks:
x = b(x)
skips.append(x)
return x, skips
class UNet(nn.Module):
def __init__(self, in_channels, out_channels, num_hidden_features,n_resblocks,num_dilated_convs, dropout_min=0, dropout_max=0, gated=False, padding=1, kernel_size=3,group_norm=32):
super(UNet, self).__init__()
if group_norm > 0:
for h in num_hidden_features:
assert h%group_norm==0, "Number of features at each layer must be divisible by 'group_norm'"
blockObject = gated_resnet if gated else ResidualBlock
batchNormObject = lambda n_features : nn.GroupNorm(group_norm,n_features) if group_norm > 0 else nn.BatchNorm2d
self.encoder = ConvolutionalEncoder(in_channels,num_hidden_features,kernel_size,padding,n_resblocks,dropout_min=dropout_min,dropout_max=dropout_max,blockObject=blockObject,batchNormObject=batchNormObject)
if num_dilated_convs > 0:
#self.dilatedConvs = DilatedConvolutions2(num_hidden_features[-1], num_dilated_convs,dropout_max,kernel_size,blockObject=blockObject,batchNormObject=batchNormObject)
self.dilatedConvs = DilatedConvolutions(num_hidden_features[-1],num_dilated_convs,dropout_max) # <v11 uses dilatedConvs2
else:
self.dilatedConvs = None
self.decoder = ConvolutionalDecoder(out_channels,num_hidden_features[::-1],kernel_size,padding,n_resblocks,dropout_min=dropout_min,dropout_max=dropout_max,blockObject=blockObject,batchNormObject=batchNormObject)
def forward(self, x):
x,skips = self.encoder(x)
if self.dilatedConvs is not None:
x,dilated_skips = self.dilatedConvs(x)
for d in dilated_skips:
x += d
x += skips[-1]
x = self.decoder(x,skips[:-1][::-1])
return x