-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathZNNOP_KUKA.m
251 lines (211 loc) · 8.88 KB
/
ZNNOP_KUKA.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
% This is the code for ZNNOP for tracking cardiod by KUKA
%clc
clear
format long
%% initialize parameters
dt = 0.001 ; %time instant
t_end = 10; %end time for path
t_span = 0:dt:t_end; %time of simulation
t_sim = t_end; % end time for simulation
m = 3; %no. of equations
n = 7; % no of parametes
% performance constraints preliminaries
rho_inf = 0.005; %final value of bound
delta = 100; % exponential decay constant
gamma = 100; %ZNN gain
k_pos = 2; % postional error gain
f = 2; % parameeter for initial values of PPC
%% Initial Conditions
%th(:,1) = [pi/4,-pi/2,-pi/4,pi/6,pi/3,pi/2,pi/6];
th(:,1) = [-0.2578,0.2946,0.5946,-0.9896,0.4993,0.3100,0.8620];
%example 2
%th(:,1) = [pi/14,pi/14,pi/14,pi/14,pi/14,pi/14];
th_dot = 0*ones(n,1);
lambda_0 = [1;1;1]; % initiual values of the lagragian coeffecients
y(:,1) = [th_dot;lambda_0]; % cascaded vector
%% parameters of KUKA robot
a8 = 0.126; %length of the end effector
d1 = 0.36;
d3 = 0.42;
d5 = 0.4;
%% position with respect to the body frame
% actual position of the robot
r_a(:,1) = forward_map_kuka(a8,d1,d3,d5,th(:,1)); % ac
% deviation of desired path from actual path
% initially
dev = [-0.04;0.035;0.025];
r_d(:,1) = r_a(:,1)+dev; %initial position of end effector
%% constraints
%Constraints
% upper limit of joint velocities
th_dot_pos = 3.6*[0.0001;0.1;0.1;0.1;0.0001;0.0001;0.1];
% lower limit of joint velocities
th_dot_neg = -th_dot_pos;
string = '3rd + 5th + 6th Joint Fault';
%% Initializing Matricies
th_dot_pos_plot = th_dot_pos*ones(1,size(t_span,2)); % Upper bound for plot
th_dot_neg_plot = th_dot_neg*ones(1,size(t_span,2)); % lower boud for plot
error = zeros(m,size(t_span,2));
%% ZNN path tracking
for i=1:length(t_span)
t = t_span(i);
% Kinematics of the Robot
J = Jacobian_matrix_kuka(a8,d1,d3,d5,th(:,i)); % Jacobian Matrix
J_dot = Jacobian_dot_kuka(a8,d1,d3,d5,th(:,i),th_dot(:,i)); % Jacobian dot
% desired path parameters
c = 0.03;
tilt = pi/6;
shape = 'tricuspid';
[r_d(:,i+1), r_d_dot ,r_d_ddot] = path_3D(c,tilt,r_d(:,1),t,t_end,shape);
%error for drift free case
error(:,i) = J*y(1:n,i)-r_d_dot + k_pos*(r_a(:,i)-r_d(:,i)); %error_function e(t)
diff_error_t(:,i) = J_dot*y(1:n,i)-r_d_ddot + k_pos*(J*y(1:n,i)-r_d_dot); %d(e(t))/dt
%performance constraint
rho_0 = f*ones(m,1);%error(:,1);
rho_r = abs(rho_0)*exp(-delta*t)+rho_inf;
diff_rho_r_t = -delta*abs(rho_0)*exp(-delta*t); %d(rho_r)/dt
rho_l = -rho_r;
diff_rho_l_t = -diff_rho_r_t;
%neta transformations
neta_1 = (y(1:n,i)-th_dot_neg)./(th_dot_pos-th_dot_neg);
neta_2 = (error(:,i)-rho_l)./(rho_r-rho_l);
%% chi transformations and g
chi_1 = log(neta_1./(1-neta_1));
chi_2 = log(neta_2./(1-neta_2));
g = (chi_2.*chi_2)/2;
% time and spartaial differentiation
for j = 1:m
diff_neta_2j_neta = neta_2(j)*(1-neta_2(j));
diff_sec_2_neta_2 = (1+(2*neta_2(j)-1)*chi_2(j))/(diff_neta_2j_neta^2);
diff_neta_2_t = ((rho_r(j)-rho_l(j))*(diff_error_t(j,i)-diff_rho_l_t(j))-(diff_rho_r_t(j)-diff_rho_l_t(j))*(error(j,i)-rho_l(j)))/((rho_r(j)-rho_l(j))^2);
for k = 1:n
diff_g_x(j,k)= J(j,k)*chi_2(j)/((rho_r(j)-rho_l(j))*(diff_neta_2j_neta));
diff_sec_1_t = ((J_dot(j,k)*(rho_r(j)-rho_l(j)))-(J(j,k)*(diff_rho_r_t(j)-diff_rho_l_t(j))))/((rho_r(j)-rho_l(j))^2);
diff_g_x_t(j,k) = (J(j,k)/(rho_r(j)-rho_l(j)))*diff_sec_2_neta_2*diff_neta_2_t+(chi_2(j)/diff_neta_2j_neta)*diff_sec_1_t;
end
diff_g_t(j,1) = chi_2(j)*diff_neta_2_t/(diff_neta_2j_neta);
end
for p = 1:n
diff_neta_1p_neta = neta_1(p)*(1-neta_1(p));
diff_delta_1_x(p,1) = chi_1(p)/((th_dot_pos(p)-th_dot_neg(p))*diff_neta_1p_neta); %d(delta_1)/dx ;;delta_1 = (1/2)*(chi_1)^T*chi_1
for q =1:n
if p==q
diff_delta_1_x_x(p,q) = (1+(2*neta_1(p)-1)*chi_1(p))/(((th_dot_pos(p)-th_dot_neg(p))*diff_neta_1p_neta)^2);
else
diff_delta_1_x_x(p,q) = 0;
end
sum_glam_x = 0;
for s = 1:m
diff_chi_2s_neta = neta_2(s)*(1-neta_2(s));
ele_glam_x = y(n+s,i)*J(s,p)*J(s,q)*(1+(2*neta_2(s)-1)*chi_2(s))/(((rho_r(s)-rho_l(s))*diff_chi_2s_neta)^2);
sum_glam_x = sum_glam_x+ele_glam_x;
end
diff_glam_x(p,q) = sum_glam_x;
end
end
h = [diff_delta_1_x+(diff_g_x'*y(n+1:end,i));
g];
diff_h_t = [diff_g_x_t'*y(n+1:end,i);
diff_g_t];
diff_h_y = [(diff_delta_1_x_x+diff_glam_x), diff_g_x'
diff_g_x, zeros(m,m)];
y_dot(:,i) = -pinv(diff_h_y)*(gamma*(h)+diff_h_t);
if i<=3 %euler
y(:,i+1) = y(:,i) + y_dot(:,i)*dt;
th_dot(:,i+1)= y(1:n,i+1);
th(:,i+1) = th(:,i) + th_dot(:,i)*dt;
else %FIFD
y(:,i+1) = (8/5)*y_dot(:,i)*dt + (3/5)*y(:,i) + (1/5)*y(:,i-1)+ (1/5)*y(:,i-2);
th_dot(:,i+1)= y(1:n,i+1);
th(:,i+1) = (8/5)*th_dot(:,i)*dt + (3/5)*th(:,i) + (1/5)*th(:,i-1)+ (1/5)*th(:,i-2); %FIFD
end
% errors
error_norm(:,i) = norm(error(:,i)); % norm of error function
error_stat(:,i) = (J*y(1:n,i) - r_d_dot); % velocity level error
error_trag(:,i) = r_a(:,i) - r_d(:,i); % end effector position error
r_a(:,i+1) = forward_map_kuka(a8,d1,d3,d5,th(:,i+1));
control_eff(:,i) = norm(th_dot(:,i)); %% control effort
error_trag_norm(:,i) = norm(error_trag(:,i));
end
%% plots
figure(1)
plot(t_span,th_dot(1,1:end-1),t_span,th_dot(2,1:end-1),'c--',t_span,th_dot(3,1:end-1),'y:',t_span,th_dot(4,1:end-1),'g-.',t_span,th_dot(5,1:end-1),'m',t_span,th_dot(6,1:end-1),'k--',t_span,th_dot(7,1:end-1), 'LineWidth',1.5)
%title('Variation of the states of system with time')
hold on
plot(t_span,th_dot_pos_plot(2,:),'r--',t_span,th_dot_neg_plot(2,:),'r--')
hold on
h2 =legend('$\dot{\theta}_1 $','$\dot{\theta}_2$','$\dot{\theta}_3$','$\dot{\theta}_4$','$\dot{\theta}_5$','$\dot{\theta}_6$','$\dot{\theta}_7$','$\dot{\theta}^+ $','$\dot{\theta}^-$',[400 260 0 0]);
set(h2,'Interpreter', 'latex');
xlabel('t(s)')
hl = ylabel('$\dot{\theta}_{i}$');
set(hl,'Interpreter', 'latex');
ylim([th_dot_neg(2)+0.05*th_dot_neg(2) th_dot_pos(2)+0.05*th_dot_pos(2) ])
figure(2)
plot(t_span,th(1,1:end-1),t_span,th(2,1:end-1),'c--',t_span,th(3,1:end-1),'y:',t_span,th(4,1:end-1),'g-.',t_span,th(5,1:end-1),'m',t_span,th(6,1:end-1),'k--',t_span,th(7,1:end-1),'--', 'LineWidth',1.5)
%title('Variation of the states of system with time')
h2 =legend('${\theta}_1 $','${\theta}_2$','${\theta}_3$','${\theta}_4$','${\theta}_5$','${\theta}_6$','${\theta}_7$');
set(h2,'Interpreter', 'latex');
xlabel('t(s)')
hold on
%
figure(3)
plot(t_span(1:(t_end/dt)+1),error_trag(1,1:(t_end/dt)+1),t_span(1:(t_end/dt)+1),error_trag(2,1:(t_end/dt)+1),'--',t_span(1:(t_end/dt)+1),error_trag(3,1:(t_end/dt)+1),'-.');
%title('Variation of Position tracking error with time')
xlabel('t(s)')
ylabel('Position tracking error(\epsilon) (m)')
legend('\epsilon_x','\epsilon_y','\epsilon_z')
hold on
figure(4)
plot(t_span(1:(t_end/dt)+1),error_stat(1,1:(t_end/dt)+1),t_span(1:(t_end/dt)+1),error_stat(2,1:(t_end/dt)+1),t_span(1:(t_end/dt)+1),error_stat(3,1:(t_end/dt)+1))
%title('Variation of velocity tracking error with time')
xlabel('t(s)')
ylabel('Velocity tracking error (m/s)')
legend('\epsilon_1','\epsilon_2','\epsilon_3')
hold on
figure(5)
plot(t_span(1:(t_sim/dt)+1),error_norm(1:(t_sim/dt)+1),'linewidth',1.2);
title('Variation of ||e(t)||_2 with time ')
xlabel('t(s)')
ylabel('||e(t)||_2')
hold on
figure(6)
% simple tragectory
plot3(r_d(1,:),r_d(2,:),r_d(3,:),'r','linewidth',1.5)
hold on
plot3(r_a(1,:),r_a(2,:),r_a(3,:),'b--','linewidth',1.5)
hold on
xlabel('x(m)')
ylabel('y(m)')
zlabel('z(m)')
legend('Traced Tragectory','Desired Tragectory')
%% control effort
figure(7)
plot(t_span,control_eff)
cont_eff_total = norm(control_eff);
hold on
figure(8)
plot(t_span,y_dot(1,:),t_span,y_dot(2,:),'c--',t_span,y_dot(3,:),'y:',t_span,y_dot(4,:),'g-.',t_span,y_dot(5,:),'m',t_span,y_dot(6,:),'k--',t_span,y_dot(7,:),'--')
%title('Variation of the states of system with time')
h2 =legend('$\ddot{\theta}_1 $','$\ddot{\theta}_2$','$\ddot{\theta}_3$','$\ddot{\theta}_4$','$\ddot{\theta}_5$','$\ddot{\theta}_6$','$\ddot{\theta}_7$');
set(h2,'Interpreter', 'latex');
xlabel('t(s)')
hold on
figure(9)
plot(t_span(1:(t_sim/dt)+1),error_trag_norm(1:(t_sim/dt)+1),'linewidth',1.2);
title('Variation of ||e(t)||_2 with time ')
xlabel('t(s)')
ylabel('||e(t)||_2')
hold on
figure(10)
semilogy(t_span(1:(t_sim/dt)+1),error_trag_norm(1:(t_sim/dt)+1),'linewidth',1.2);
title('Variation of ||e(t)||_2 with time ')
xlabel('t(s)')
ylabel('||e(t)||_2')
hold on
% performance parameters
normal_control_eff = norm(control_eff)*sqrt(dt/(n*t_end))
mean_trac_err = norm(error_trag_norm)*sqrt(dt/(m*t_end))
% initial deviation percentages
x_per = dev(1)/(max(r_a(1,:))-min(r_a(1,:)))*100
y_per = dev(2)/(max(r_a(2,:))-min(r_a(2,:)))*100
z_per = dev(3)/(max(r_a(3,:))-min(r_a(3,:)))*100