-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpkc_reorder.cpp
270 lines (215 loc) · 9.04 KB
/
pkc_reorder.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
#include <cassert>
#include <omp.h>
#include <util/log/log.h>
#include <util/timer.h>
#include "reorder_utils.h"
#define frac 0.98
void free_graph_pkc(graph_t *g) {
if (g->adj != nullptr)
free(g->adj);
if (g->num_edges != nullptr)
free(g->num_edges);
}
//PKC -- Make a graph with remaining vertices, parallel k-core decomposition
void PKC(graph_t *g, int *deg, int num_of_threads) {
long n = g->n;
long reduceN = 0;
long Size = 0;
long visited = 0;
int *newDeg = nullptr;
unsigned int *mapIndexToVtx = nullptr;
auto *vertexToIndex = (vid_t *) malloc(n * sizeof(vid_t));
unsigned int cumNumEdges[num_of_threads];
unsigned int part = 0;
graph_t g_small;
g_small.num_edges = nullptr;
g_small.adj = nullptr;
#pragma omp parallel num_threads(num_of_threads)
{
int level = 0;
int tid = omp_get_thread_num();
vector<vid_t> buffer;
size_t start = 0;
int useSmallQ = 0;
#pragma omp for schedule(static)
for (long i = 0; i < n; i++) {
deg[i] = (g->num_edges[i + 1] - g->num_edges[i]);
}
while (visited < n) {
if ((useSmallQ == 0) && (visited >= (long) (n * frac))) {
Timer timer;
useSmallQ = 1;
if (tid == 0) {
reduceN = n - visited;
newDeg = (int *) malloc(reduceN * sizeof(int));
mapIndexToVtx = (unsigned int *) malloc(reduceN * sizeof(unsigned int));
g_small.n = reduceN;
g_small.num_edges = (eid_t *) malloc((reduceN + 1) * sizeof(eid_t));
g_small.num_edges[0] = 0;
part = reduceN / num_of_threads;
}
#pragma omp barrier
#pragma omp for schedule(static)
for (long i = 0; i < n; i++) {
if (deg[i] >= level) {
buffer.push_back(i);
}
}
//Now add them atomically
long begin = __sync_fetch_and_add(&Size, buffer.size());
for (size_t i = 0; i < buffer.size(); i++) {
newDeg[begin + i] = deg[buffer[i]];
mapIndexToVtx[begin + i] = buffer[i];
vertexToIndex[buffer[i]] = begin + i;
}
buffer.clear();
#pragma omp barrier
//Make a graph with reduceN vertices
unsigned int edgeCount = 0;
if (tid == num_of_threads - 1) {
for (long i = tid * part; i < Size; i++) {
unsigned int v = mapIndexToVtx[i];
unsigned int prevEdgeCount = edgeCount;
for (eid_t j = g->num_edges[v]; j < g->num_edges[v + 1]; j++) {
if (deg[g->adj[j]] >= level) {
edgeCount++;
}
}
g_small.num_edges[i] = prevEdgeCount;
}
cumNumEdges[tid] = edgeCount;
} else {
for (long i = tid * part; i < (tid + 1) * part; i++) {
unsigned int v = mapIndexToVtx[i];
unsigned int prevEdgeCount = edgeCount;
for (eid_t j = g->num_edges[v]; j < g->num_edges[v + 1]; j++) {
if (deg[g->adj[j]] >= level) {
edgeCount++;
}
}
g_small.num_edges[i] = prevEdgeCount;
}
cumNumEdges[tid] = edgeCount;
}
#pragma omp barrier
if (tid == 0) {
long start = cumNumEdges[0];
for (int i = 1; i < num_of_threads; i++) {
unsigned int prevEdgeCount = start;
start = start + cumNumEdges[i];
cumNumEdges[i] = prevEdgeCount;
}
g_small.m = start;
g_small.num_edges[Size] = start;
g_small.adj = (vid_t *) malloc(g_small.m * sizeof(vid_t));
cumNumEdges[0] = 0;
}
#pragma omp barrier
if (tid == num_of_threads - 1) {
for (long i = tid * part; i < Size; i++) {
g_small.num_edges[i] = g_small.num_edges[i] + cumNumEdges[tid];
unsigned int v = mapIndexToVtx[i];
for (eid_t j = g->num_edges[v]; j < g->num_edges[v + 1]; j++) {
if (deg[g->adj[j]] >= level) {
g_small.adj[g_small.num_edges[i]] = vertexToIndex[g->adj[j]];
g_small.num_edges[i]++;
}
}
}
} else {
for (long i = tid * part; i < (tid + 1) * part; i++) {
g_small.num_edges[i] = g_small.num_edges[i] + cumNumEdges[tid];
unsigned int v = mapIndexToVtx[i];
for (eid_t j = g->num_edges[v]; j < g->num_edges[v + 1]; j++) {
if (deg[g->adj[j]] >= level) {
g_small.adj[g_small.num_edges[i]] = vertexToIndex[g->adj[j]];
g_small.num_edges[i]++;
}
}
}
}
#pragma omp barrier
//Now fix num_edges array
if (tid == num_of_threads - 1) {
for (long i = Size - 1; i >= tid * part + 1; i--) {
g_small.num_edges[i] = g_small.num_edges[i - 1];
}
g_small.num_edges[tid * part] = cumNumEdges[tid];
} else {
for (long i = (tid + 1) * part - 1; i >= tid * part + 1; i--) {
g_small.num_edges[i] = g_small.num_edges[i - 1];
}
g_small.num_edges[tid * part] = cumNumEdges[tid];
}
#pragma omp barrier
#pragma omp single
log_info("Shrink Time: %.9lfs", timer.elapsed());
}
if (useSmallQ == 0) {
#pragma omp for schedule(static)
for (long i = 0; i < n; i++) {
if (deg[i] == level) {
buffer.push_back(i);
}
}
//Get work from curr queue and also add work after the current size
while (start < buffer.size()) {
vid_t v = buffer[start];
start++;
for (eid_t j = g->num_edges[v]; j < g->num_edges[v + 1]; j++) {
vid_t u = g->adj[j];
int deg_u = deg[u];
if (deg_u > level) {
int du = __sync_fetch_and_sub(°[u], 1);
if (du == (level + 1)) {
buffer.push_back(u);
}
if (du <= level) {
__sync_fetch_and_add(°[u], 1);
}
} //deg_u > level
} //visit adjacencies
} //end of while loop
} else {
#pragma omp for schedule(static)
for (long i = 0; i < Size; i++) {
if (newDeg[i] == level) {
buffer.push_back(i);
}
}
//Get work from curr queue and also add work after the current size
while (start < buffer.size()) {
vid_t v = buffer[start];
start++;
for (eid_t j = g_small.num_edges[v]; j < g_small.num_edges[v + 1]; j++) {
vid_t u = g_small.adj[j];
int deg_u = newDeg[u];
if (deg_u > level) {
int du = __sync_fetch_and_sub(&newDeg[u], 1);
if (du == (level + 1)) {
buffer.push_back(u);
}
if (du <= level) {
__sync_fetch_and_add(&newDeg[u], 1);
}
} //deg_u > level
} //visit adjacencies
} //end of while loop
}
__sync_fetch_and_add(&visited, buffer.size());
#pragma omp barrier
start = 0;
buffer.clear();
level = level + 1;
} //end of #visited < n
//copy core values from newDeg to deg
#pragma omp for schedule(static)
for (long i = 0; i < Size; i++) {
deg[mapIndexToVtx[i]] = newDeg[i];
}
} //#end of parallel region
free(newDeg);
free(mapIndexToVtx);
free(vertexToIndex);
free_graph_pkc(&g_small);
}