-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathtrain_isic.py
152 lines (119 loc) · 5.55 KB
/
train_isic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import torch
from torch.autograd import Variable
import argparse
from datetime import datetime
from lib.TransFuse import TransFuse_S, TransFuse_L, TransFuse_L_384
from utils.dataloader import get_loader, test_dataset
from utils.utils import AvgMeter
import torch.nn.functional as F
import numpy as np
import matplotlib.pyplot as plt
from test_isic import mean_dice_np, mean_iou_np
import os
def structure_loss(pred, mask):
weit = 1 + 5*torch.abs(F.avg_pool2d(mask, kernel_size=31, stride=1, padding=15) - mask)
wbce = F.binary_cross_entropy_with_logits(pred, mask, reduction='none')
wbce = (weit*wbce).sum(dim=(2, 3)) / weit.sum(dim=(2, 3))
pred = torch.sigmoid(pred)
inter = ((pred * mask)*weit).sum(dim=(2, 3))
union = ((pred + mask)*weit).sum(dim=(2, 3))
wiou = 1 - (inter + 1)/(union - inter+1)
return (wbce + wiou).mean()
def train(train_loader, model, optimizer, epoch, best_loss):
model.train()
loss_record2, loss_record3, loss_record4 = AvgMeter(), AvgMeter(), AvgMeter()
accum = 0
for i, pack in enumerate(train_loader, start=1):
# ---- data prepare ----
images, gts = pack
images = Variable(images).cuda()
gts = Variable(gts).cuda()
# ---- forward ----
lateral_map_4, lateral_map_3, lateral_map_2 = model(images)
# ---- loss function ----
loss4 = structure_loss(lateral_map_4, gts)
loss3 = structure_loss(lateral_map_3, gts)
loss2 = structure_loss(lateral_map_2, gts)
loss = 0.5 * loss2 + 0.3 * loss3 + 0.2 * loss4
# ---- backward ----
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), opt.grad_norm)
optimizer.step()
optimizer.zero_grad()
# ---- recording loss ----
loss_record2.update(loss2.data, opt.batchsize)
loss_record3.update(loss3.data, opt.batchsize)
loss_record4.update(loss4.data, opt.batchsize)
# ---- train visualization ----
if i % 20 == 0 or i == total_step:
print('{} Epoch [{:03d}/{:03d}], Step [{:04d}/{:04d}], '
'[lateral-2: {:.4f}, lateral-3: {:0.4f}, lateral-4: {:0.4f}]'.
format(datetime.now(), epoch, opt.epoch, i, total_step,
loss_record2.show(), loss_record3.show(), loss_record4.show()))
save_path = 'snapshots/{}/'.format(opt.train_save)
os.makedirs(save_path, exist_ok=True)
if (epoch+1) % 1 == 0:
meanloss = test(model, opt.test_path)
if meanloss < best_loss:
print('new best loss: ', meanloss)
best_loss = meanloss
torch.save(model.state_dict(), save_path + 'TransFuse-%d.pth' % epoch)
print('[Saving Snapshot:]', save_path + 'TransFuse-%d.pth'% epoch)
return best_loss
def test(model, path):
model.eval()
mean_loss = []
for s in ['val', 'test']:
image_root = '{}/data_{}.npy'.format(path, s)
gt_root = '{}/mask_{}.npy'.format(path, s)
test_loader = test_dataset(image_root, gt_root)
dice_bank = []
iou_bank = []
loss_bank = []
acc_bank = []
for i in range(test_loader.size):
image, gt = test_loader.load_data()
image = image.cuda()
with torch.no_grad():
_, _, res = model(image)
loss = structure_loss(res, torch.tensor(gt).unsqueeze(0).unsqueeze(0).cuda())
res = res.sigmoid().data.cpu().numpy().squeeze()
gt = 1*(gt>0.5)
res = 1*(res > 0.5)
dice = mean_dice_np(gt, res)
iou = mean_iou_np(gt, res)
acc = np.sum(res == gt) / (res.shape[0]*res.shape[1])
loss_bank.append(loss.item())
dice_bank.append(dice)
iou_bank.append(iou)
acc_bank.append(acc)
print('{} Loss: {:.4f}, Dice: {:.4f}, IoU: {:.4f}, Acc: {:.4f}'.
format(s, np.mean(loss_bank), np.mean(dice_bank), np.mean(iou_bank), np.mean(acc_bank)))
mean_loss.append(np.mean(loss_bank))
return mean_loss[0]
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--epoch', type=int, default=25, help='epoch number')
parser.add_argument('--lr', type=float, default=7e-5, help='learning rate')
parser.add_argument('--batchsize', type=int, default=16, help='training batch size')
parser.add_argument('--grad_norm', type=float, default=2.0, help='gradient clipping norm')
parser.add_argument('--train_path', type=str,
default='data/', help='path to train dataset')
parser.add_argument('--test_path', type=str,
default='data/', help='path to test dataset')
parser.add_argument('--train_save', type=str, default='TransFuse_S')
parser.add_argument('--beta1', type=float, default=0.5, help='beta1 of adam optimizer')
parser.add_argument('--beta2', type=float, default=0.999, help='beta2 of adam optimizer')
opt = parser.parse_args()
# ---- build models ----
model = TransFuse_S(pretrained=True).cuda()
params = model.parameters()
optimizer = torch.optim.Adam(params, opt.lr, betas=(opt.beta1, opt.beta2))
image_root = '{}/data_train.npy'.format(opt.train_path)
gt_root = '{}/mask_train.npy'.format(opt.train_path)
train_loader = get_loader(image_root, gt_root, batchsize=opt.batchsize)
total_step = len(train_loader)
print("#"*20, "Start Training", "#"*20)
best_loss = 1e5
for epoch in range(1, opt.epoch + 1):
best_loss = train(train_loader, model, optimizer, epoch, best_loss)