-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1-s2.0-S0370269315006577.nb
5224 lines (5157 loc) · 267 KB
/
1-s2.0-S0370269315006577.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 12.3' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 272834, 5216]
NotebookOptionsPosition[ 268251, 5130]
NotebookOutlinePosition[ 268643, 5146]
CellTagsIndexPosition[ 268600, 5143]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[TextData[StyleBox["A novel solution to the Klein\[Dash]Gordon equation \
in the presence of a strong rotating electric field", "Title",
FontWeight->"Regular",
FontColor->RGBColor[
0.2964217593652247, 0.6292210269321736, 0.2727702754253452]]], "Text",
CellChangeTimes->{{3.822636147120782*^9, 3.822636149053595*^9}, {
3.822636240732341*^9, 3.82263625191656*^9}, {3.822637212068983*^9,
3.822637212721833*^9}, 3.8237615278152447`*^9, {3.832146512264089*^9,
3.832146513507378*^9},
3.8762360930657187`*^9},ExpressionUUID->"55e7c0d2-771b-487e-943e-\
70df46dc454b"],
Cell[TextData[{
StyleBox["E. Raicher, S. Eliezer, A. Zigler, Physics Letters B 750 (2015) 76\
\[Dash]81\nNotebook: \[CapitalOAcute]scar Amaro, November 2022 @", "Section",
FontSize->24,
FontColor->GrayLevel[0]],
StyleBox[ButtonBox[" ",
BaseStyle->"Hyperlink",
ButtonData->{
URL["http://epp.ist.utl.pt/"], None},
ButtonNote->"http://epp.ist.utl.pt/"], "Section",
FontSize->24,
FontColor->GrayLevel[0]],
StyleBox[ButtonBox["GoLP-EPP",
BaseStyle->"Hyperlink",
ButtonData->{
URL["http://epp.ist.utl.pt/"], None},
ButtonNote->"http://epp.ist.utl.pt/"], "Section",
FontSize->24,
FontVariations->{"Underline"->True},
FontColor->GrayLevel[0]],
StyleBox["\nContact: oscar.amaro@tecnico.ulisboa.pt", "Section",
FontSize->24,
FontColor->GrayLevel[0]]
}], "Text",
CellChangeTimes->{{3.8226362283387003`*^9, 3.822636334723393*^9},
3.822636391632341*^9, {3.8226372468331547`*^9, 3.822637246833611*^9}, {
3.823761573155903*^9, 3.8237615739111023`*^9}, {3.832146444679867*^9,
3.8321464496507*^9}, {3.832146486894559*^9, 3.832146520629979*^9}, {
3.876236025569461*^9, 3.8762360467538843`*^9}, {3.876236101808344*^9,
3.876236102300007*^9}},
FontSize->14,ExpressionUUID->"640d3a68-01eb-405c-b45c-c4624dd81db0"],
Cell[TextData[{
StyleBox["Introduction", "Section",
FontSize->24,
FontWeight->"Bold",
FontColor->GrayLevel[0]],
StyleBox["\nIn this notebook we reproduce some results from the paper. ",
"Section",
FontSize->24,
FontColor->GrayLevel[0]]
}], "Text",
CellChangeTimes->{{3.8226362283387003`*^9, 3.822636334723393*^9}, {
3.822636391632341*^9, 3.8226364148286*^9}, {3.822636632459257*^9,
3.82263666754714*^9}, {3.8226367225529222`*^9, 3.822636739164402*^9}, {
3.8237615773382463`*^9, 3.823761602335499*^9}, {3.832146518032268*^9,
3.832146518523243*^9}, {3.875593945207685*^9, 3.8755939532588367`*^9}},
FontSize->14,ExpressionUUID->"486412fd-4633-4573-b53c-743b53529cc1"],
Cell[CellGroupData[{
Cell["Equation 9: expansion as Fourier series", "Chapter",
CellChangeTimes->{{3.874869107114417*^9,
3.87486911671602*^9}},ExpressionUUID->"67782eca-2649-4cb9-a147-\
8278ee41f1b5"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"Clear", "[",
RowBox[{
"y", ",", "z", ",", "n", ",", "c2n", ",", "\[Mu]", ",", "\[Lambda]", ",",
"q", ",", "eq6"}], "]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"y", "[", "z", "]"}], "=",
RowBox[{
RowBox[{"Exp", "[",
RowBox[{"I", " ", "\[Mu]", " ", "z"}], "]"}],
RowBox[{"Sum", "[",
RowBox[{
RowBox[{
RowBox[{"c2n", "[", "n", "]"}], " ",
RowBox[{"Exp", "[",
RowBox[{"2", "I", " ", "z", " ", "n"}], "]"}]}], ",", "n"}],
"]"}]}]}], "\[IndentingNewLine]",
RowBox[{"eq6", "=",
RowBox[{
RowBox[{
RowBox[{"D", "[",
RowBox[{
RowBox[{"y", "[", "z", "]"}], ",",
RowBox[{"{",
RowBox[{"z", ",", "2"}], "}"}]}], "]"}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"\[Lambda]", "-",
RowBox[{"2", "q", " ",
FractionBox[
RowBox[{
RowBox[{"Exp", "[",
RowBox[{"I", " ", "2", "z"}], "]"}], "+",
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-", "I"}], " ", "2", "z"}], "]"}]}], "2"]}]}], ")"}],
RowBox[{"y", "[", "z", "]"}]}]}], "//", "FullSimplify"}]}]}], "Input",
CellChangeTimes->{{3.8748691243136997`*^9, 3.87486920877402*^9},
3.874869311715707*^9, {3.874869363032488*^9, 3.874869363519322*^9}, {
3.874869456338468*^9, 3.874869456501772*^9}, {3.874869516647313*^9,
3.874869517244664*^9}},
CellLabel->
"In[436]:=",ExpressionUUID->"e49482c9-9e97-43b0-8aa3-27dbbc67f06f"],
Cell[BoxData[
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "z", " ", "\[Mu]"}]], " ",
RowBox[{
UnderscriptBox["\[Sum]", "n"],
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"2", " ", "\[ImaginaryI]", " ", "n", " ", "z"}]], " ",
RowBox[{"c2n", "[", "n", "]"}]}]}]}]], "Output",
CellChangeTimes->{{3.87486916653055*^9, 3.8748692090302563`*^9},
3.8748693124488783`*^9, 3.874869363853879*^9, 3.874869456852491*^9,
3.874869517595544*^9},
CellLabel->
"Out[437]=",ExpressionUUID->"e7f5d1c7-2cc8-43c2-98bd-afd7fa5aad56"],
Cell[BoxData[
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "z", " ", "\[Mu]"}]], " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"\[Lambda]", "-",
SuperscriptBox["\[Mu]", "2"], "-",
RowBox[{"2", " ", "q", " ",
RowBox[{"Cos", "[",
RowBox[{"2", " ", "z"}], "]"}]}]}], ")"}], " ",
RowBox[{
UnderscriptBox["\[Sum]", "n"],
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"2", " ", "\[ImaginaryI]", " ", "n", " ", "z"}]], " ",
RowBox[{"c2n", "[", "n", "]"}]}]}]}], "+",
RowBox[{"2", " ", "\[ImaginaryI]", " ", "\[Mu]", " ",
RowBox[{
UnderscriptBox["\[Sum]", "n"],
RowBox[{"2", " ", "\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"2", " ", "\[ImaginaryI]", " ", "n", " ", "z"}]], " ", "n",
" ",
RowBox[{"c2n", "[", "n", "]"}]}]}]}], "+",
RowBox[{
UnderscriptBox["\[Sum]", "n"],
RowBox[{
RowBox[{"-", "4"}], " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"2", " ", "\[ImaginaryI]", " ", "n", " ", "z"}]], " ",
SuperscriptBox["n", "2"], " ",
RowBox[{"c2n", "[", "n", "]"}]}]}]}], ")"}]}]], "Output",
CellChangeTimes->{{3.87486916653055*^9, 3.8748692090302563`*^9},
3.8748693124488783`*^9, 3.874869363853879*^9, 3.874869456852491*^9,
3.874869521307763*^9},
CellLabel->
"Out[438]=",ExpressionUUID->"ac874954-7d1c-4fcb-b7bd-462c3bcd49a6"]
}, Open ]],
Cell[BoxData[
RowBox[{"Solve", "[", "eq6", "]"}]], "Input",
CellChangeTimes->{{3.8748693231064053`*^9,
3.874869325770255*^9}},ExpressionUUID->"cb3be649-c5e3-4e8a-a4aa-\
7287cdf3d7e2"]
}, Open ]],
Cell[CellGroupData[{
Cell["Equation 19: solving analytically 1st order equation", "Chapter",
CellChangeTimes->{{3.8748677626533012`*^9, 3.874867764533333*^9}, {
3.874867820046884*^9,
3.874867830025709*^9}},ExpressionUUID->"6cd3b410-3e13-4b25-9954-\
2ba6286f8b0c"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"Clear", "[",
RowBox[{"\[Lambda]", ",", "y", ",", "z", ",", "q"}],
"]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"DSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"y", "'"}], "[", "z", "]"}], "+",
RowBox[{"I",
RowBox[{"(",
RowBox[{
RowBox[{"Sqrt", "[", "\[Lambda]", "]"}], "-",
RowBox[{
FractionBox["q",
RowBox[{"Sqrt", "[", "\[Lambda]", "]"}]],
RowBox[{"Cos", "[",
RowBox[{"2", "z"}], "]"}]}]}], ")"}],
RowBox[{"y", "[", "z", "]"}]}]}], "==", "0"}], "}"}], ",",
RowBox[{"y", "[", "z", "]"}], ",", "z"}], "]"}], "//",
"Simplify"}]}], "Input",
CellChangeTimes->{{3.874867626517261*^9, 3.874867715425907*^9}},
CellLabel->
"In[249]:=",ExpressionUUID->"931f638c-614e-4882-842c-76a6c4ea4bfb"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{
RowBox[{"y", "[", "z", "]"}], "\[Rule]",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
FractionBox[
RowBox[{"\[ImaginaryI]", " ",
RowBox[{"(",
RowBox[{
RowBox[{"z", " ", "\[Lambda]"}], "-",
RowBox[{"q", " ",
RowBox[{"Cos", "[", "z", "]"}], " ",
RowBox[{"Sin", "[", "z", "]"}]}]}], ")"}]}],
SqrtBox["\[Lambda]"]]}]], " ",
TemplateBox[{"1"},
"C"]}]}], "}"}], "}"}]], "Output",
CellChangeTimes->{{3.874867680045617*^9, 3.874867709102955*^9},
3.874867766096788*^9},
CellLabel->
"Out[250]=",ExpressionUUID->"f94222fc-5870-4b63-ba55-4077a2ce65f3"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Equation 22: Bessel function expansion", "Chapter",
CellChangeTimes->{{3.8748677626533012`*^9, 3.874867764533333*^9}, {
3.874867811177162*^9, 3.87486781170261*^9}, {3.8748678417526283`*^9,
3.874867846526162*^9}},ExpressionUUID->"6cff8367-c49d-4468-970b-\
89b48e6e5488"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{"first", " ",
RowBox[{
RowBox[{"maximum", " ", "@", " ", "X"}], "~", "n"}]}], " ", "*)"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"Clear", "[",
RowBox[{"n", ",", "X", ",", "root"}], "]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"root", "[", "n_", "]"}], ":=",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"FindMaximum", "[",
RowBox[{
RowBox[{"BesselJ", "[",
RowBox[{"n", ",", "X"}], "]"}], ",",
RowBox[{"{",
RowBox[{"X", ",",
RowBox[{"0.9", "n"}]}], "}"}]}], "]"}], "//", "Quiet"}], ")"}],
"[",
RowBox[{"[",
RowBox[{"2", ",", "1", ",", "2"}], "]"}], "]"}]}],
"\[IndentingNewLine]",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"ParallelTable", "[",
RowBox[{
RowBox[{"{",
RowBox[{"n", ",",
RowBox[{"root", "[", "n", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"n", ",", "5", ",", "200", ",", "10"}], "}"}]}], "]"}], ",",
RowBox[{"ParallelTable", "[",
RowBox[{
RowBox[{"{",
RowBox[{"n", ",", "n"}], "}"}], ",",
RowBox[{"{",
RowBox[{"n", ",", "5", ",", "200", ",", "10"}], "}"}]}], "]"}]}],
"}"}], ",",
RowBox[{"Joined", "\[Rule]", "True"}], ",",
RowBox[{"Frame", "\[Rule]", "True"}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<n\>\"", ",", "\"\<X @ Jn[X]=0 ~ n + (O(n^(1/3)))\>\""}],
"}"}]}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Default", ",", "Dashed"}], "}"}]}]}], "]"}]}]}]], "Input",
CellChangeTimes->{{3.874868343745377*^9, 3.8748687730025997`*^9},
3.8748688167704563`*^9},
CellLabel->
"In[392]:=",ExpressionUUID->"5b921f0a-a783-44b3-af18-cfa270fbeb9d"],
Cell[BoxData[
GraphicsBox[{{}, {{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.012833333333333334`],
AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQDQEiDgXip8Kmr5R0gPD1HB4nB78wZjWE8i0dFLon
MSokW0P4DY4OXTdfvzS/6gTluzlsqe//8e2lL5Tv7bC3hb3xAzeU7xDg8NbR
+4ieYCCEfyDI4eChjVq+s4Oh8qEON6bUW/erhEHlwx3O5DvPkVsbAZWPcuBl
1VokaRoNlY9xWKB5RX76nliofLyDZM2cpCuKCRD+gwSH1Lba9fr5yRC+QpJD
pumh13ErkiD8hGQH7i1hr7NeQ+UXpDjYfmdRDtNLhepPdShLKDmzYWkGVH+6
g7Zo2fZrm9Oh+jMc3ktMNin8luEAAOESWvI=
"]]},
{RGBColor[0.880722, 0.611041, 0.142051], PointSize[0.012833333333333334`],
AbsoluteThickness[1.6], Dashing[{Small, Small}], LineBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQDQEiDqi0HhptiUo3OKLRbmi0NyrtEIBKHwhCpR1C
UekD4ai0QxQqfSAGlXaIR6UfJKDSCkmodEIyKr0gBZV+kIpKK6Sj0gkZcBoA
AAQo3A==
"]]}}, {{}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox["\"X @ Jn[X]=0 ~ n + (O(n^(1/3)))\"", TraditionalForm], None}, {
FormBox["\"n\"", TraditionalForm], None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange->{{0, 195.}, {0, 199.70131901483498`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.8748683521547127`*^9, 3.87486836487978*^9}, {
3.8748684117965927`*^9, 3.8748684339589787`*^9}, {3.874868472023201*^9,
3.8748685037263327`*^9}, {3.874868538280649*^9, 3.874868582123557*^9}, {
3.874868652179881*^9, 3.8748686914336433`*^9}, {3.874868738281054*^9,
3.874868773774227*^9}, 3.874868817409027*^9},
CellLabel->
"Out[394]=",ExpressionUUID->"0a606e66-48a3-4057-998f-586a78818637"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"Clear", "[",
RowBox[{"n", ",", "X", ",", "tanh\[Alpha]"}], "]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"BesselJ", "[",
RowBox[{"10", ",", "X"}], "]"}], ",",
RowBox[{"BesselJ", "[",
RowBox[{"15", ",", "X"}], "]"}], ",",
RowBox[{"BesselJ", "[",
RowBox[{"20", ",", "X"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"X", ",", "0", ",", "40"}], "}"}], ",",
RowBox[{"PlotPoints", "\[Rule]", "2"}], ",",
RowBox[{"Frame", "\[Rule]", "True"}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<X\>\"", ",", "\"\<Jn(X)\>\""}], "}"}]}], ",",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<n=10\>\"", ",", "\"\<n=15\>\"", ",", "\"\<n=20\>\""}],
"}"}]}]}], "]"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"n", "=", "100"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"tanh\[Alpha]", "=",
RowBox[{"Sqrt", "[",
RowBox[{"1", "-",
RowBox[{
RowBox[{"(",
RowBox[{"X", "/", "n"}], ")"}], "^", "2"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"LogPlot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"BesselJ", "[",
RowBox[{"n", ",", "X"}], "]"}], ",",
RowBox[{
FractionBox["tanh\[Alpha]",
RowBox[{"\[Pi]", " ",
RowBox[{"\[Sqrt]", "3"}]}]],
RowBox[{"BesselK", "[",
RowBox[{
RowBox[{"1", "/", "3"}], ",",
RowBox[{
FractionBox["1", "3"], "n", " ",
RowBox[{"tanh\[Alpha]", "^", "3"}]}]}], "]"}],
RowBox[{"Exp", "[",
RowBox[{"n",
RowBox[{"(",
RowBox[{"tanh\[Alpha]", "+",
RowBox[{
FractionBox["1", "3"],
RowBox[{"tanh\[Alpha]", "^", "3"}]}], "-",
RowBox[{"ArcTanh", "[", "tanh\[Alpha]", "]"}]}], ")"}]}], "]"}]}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{"X", ",",
RowBox[{"0.8", "n"}], ",", "n"}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Default", ",", "Dashed"}], "}"}]}], ",",
RowBox[{"PlotPoints", "\[Rule]", "2"}], ",",
RowBox[{"Frame", "\[Rule]", "True"}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<X\>\"", ",", "\"\<Jn(X)\>\""}], "}"}]}], ",",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<BesselJ[n,X]\>\"", ",", "\"\<eq 22\>\""}], "}"}]}], ",",
RowBox[{"PlotLabel", "\[Rule]", "\"\<n=100\>\""}]}], "]"}]}], "Input",
CellChangeTimes->{{3.874867847698791*^9, 3.87486797552311*^9}, {
3.8748682006766033`*^9, 3.874868215108305*^9}, {3.874868257094342*^9,
3.874868268597801*^9}, {3.8748683148395653`*^9, 3.874868327487461*^9}, {
3.874868793945415*^9, 3.874868844673942*^9}, {3.8762361435378523`*^9,
3.8762362219642487`*^9}, {3.8762471387798862`*^9, 3.87624727376472*^9}},
CellLabel->"In[31]:=",ExpressionUUID->"2993855a-a488-4b16-8d7a-d3a12c2806f5"],
Cell[BoxData[
TemplateBox[{
GraphicsBox[{{{{}, {},
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwtz3801Xccx/HPvRNy/Dgu2axbl0KHm5/X7x/38773Wlna2bB0p4Vsmlp3
iE451+WaRfJzFY6xaJQxbWEVl3wuV5QkMpHL/AiVbYqVX+18v1vT+5zXef/7
fJhHRAdGMhFCgv/2+j+PenTq6rIGfmm2uG/X7j7n2KNEFICmsK+qa8emkJM+
1eEfB25DL/DinuEs6S0LPlv7NtMKUTid14Dcn6TwOwfPf8JCGvD92aA6t+o2
vpz7sNYQrQfVD5zUIe0XfPdkIx1DpA+3Z/JsWg3Y+MRTK0dtuSFocG0lp018
8B4j31EtZAyLq++GNOuKsZPPgQwtuQmom8sex5XHYP0vkly0kClcmEnxz5hO
xbN5xROa8o3QxHY8taiVjzsUDdmaaDNU6UTsr18qx4ELs+y3wAyi3pc+i/Co
xZC+ssCUm4OZUrfxhmsTtnsNUG6BDy6l6XC6VJhda1LKRBaAjPrbX+Z0YZ0d
lseYYAkd+8RaO2N68fIwz58ptwJWUrNMu+4+nokWmjOV20C4d9n9jLgfD2gE
LDGQNdxd13BZ42Efbi8Ku8sAGzgyMq/6TLsb19l9Vc6QcyEzX0/WGKzEZarE
BIZyO9RwRl3TZWdwjjjzQwayg7LF71h6BteJ7K8iSwbYQ3BRQUpKaAdxFfwm
Q+AAVe+cDTzUc4dczlRHoXEH8KoM09XN6iIWDyaDkNwRFLabfQfG2kix2Swf
mTmBafwgK0xdTVhfzlsjpRM4W0ozC4x+whlXl41ROA/8l6x/5qy2YvT/OYMq
lDKq+r0TH9+l9Qdd6gyK7IRO9kgHnjun/4DGLpDJGzxRUtGCI8c2tNJjLvA4
sQhoUQkesd5UQye7QlNMxBz5s5YExVsU0hw3uKZrNZ4b1Ua6Wrhf08QNpgNk
SdavbhLhep6EDnOHBGlcUXBNG2kM8hTTtDv0xdhUGeF64nBeIKJLPeDQxSb9
g+pv8Y9P/Oxo7AkDF4y9VrkKzOF9ZEqPeQKTW5GvL1XhAtleDTrZC/z+dp5m
SVRY71boM4rjDWovhtOCiQJ/wzo4TBFvWCc9KbzkcQ6/+lRykwrzAfPufGaF
fS05Whl/haJ9wI8bNdlWqiSz89JiqpQPG49vWIHnbeSAd2oahTF0pcR+Lvz1
BhlKOx1LjWHYzZ1XHN5fSdb6ABa2H9ZMnSjHU9ndW+lcgJDRAqVle9ObXgBF
cUXjzketOGSoX5+2FwDn2Ns9WeHkTb8AcuISqR7fK/j+FvUKdU8AhZoNppOK
PLLmEcKoz7jvxf5rxE8yOUVFC4HlOn5EWaIkaz4hVLyXE2kyQYjy+tN7lIEI
EqOz/8mX1JM1rwi25szN4DgxcWXOK6hfRNCbEG5bKKvDa34ROPXW29zJbcH/
Ag+14Rw=
"]]}, Annotation[#, "Charting`Private`Tag$13016#1"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwtz3lQlHUYwPHfrisrJIscyhHKIYdALggsEC7v71k2GqTAOJJjSg7Dgzhk
UQ4TWVABYQwS45A4Jim3hASGc1PeXRABAySQOw6NIUDk0hTC3jdNnplnnv+e
+X4MQqK8QpkIIcHrfXOXjv+ZXrvKwufHuydZvu3caBEp9ERTOG1PdIXJvcH9
Pwf5eJmi5/gfyxotuU8bX3dLB9MEUbhBesXlqr+3U9tgsb8aYkFY+PYreuW1
TmKL4SpVpAgJsz+GWtsxCYckdSVVxIEDi64L10KAiJ812bdFrArlntIjXI0Y
4lP1D8bYSANYIt3JBq1Swtop+BJbvAOMb+Wk3TFvJTjHzvHYSBtCujw1in+b
JuayCx8piN+FlNL0X/P6WPietOGyAtoFxXUZaClbH3utzOluAn2gOMRYX6g9
hrS1FabYAJKvUTdF7e6Y+wYgM4SF3Yu8FddgrFu1o4SJjGDu4KN6lTgRVvrQ
+DQTjMGDKJvpPpCCV0dsPmKKTUAzILdDZyobT0c5GzBlpvDFvHnZCcci3M/y
fMlAZvAiPJ0R2XoD3y0I7GKAOSxmjdf8ZV+Nq7mR1xliC8iz+LyRCpDi0paz
CQzZezB8M8w8EDXjr/0yDzIQFx4KD7up8tpw4tMCYwZYQiZLIfT7vZ3YTvAw
EYEVsG3YI8pbe3BF5uhxNGkFy/J5dv7m37HRwGNvJN4Hz4uajJ4V9OBC/TkC
6VuDp1kHYavchdW+XDZDMmug86riGd+24ku1qxooyAbMetYyKsbqMPp/bCE6
3J9l8J0bGefGfkKX2MLHeXyJy9k6cuEqZ4DGPFA690NR3ua7ZOjEdjk9wQPT
Xd5+E9J28g+zneV0kh0g2tNiwLed9D5llEfr2UPVO9s8Xo00k/ebLFJo0h7U
X/RIzO9Xk86KNhF0oAMs+UxePLM1Czd6O/rRtAOkuZ5cWFBsxFbFAiFd8j64
h3WbXu9swZIZVy6NHUErIjA9f70V69l8ok1POILEwNk8MLUZ5yb6suik/ZAa
/ku/qLwGK7cfXqT0+PBq7GhMQ+4J8oLa0RGK5INO/nynyze15PpnEa1UoBMw
9hrmDK3JSdGNU5UU7QSTfHdilm4h55a/KqRKCJBN1icPesnIYP75VApj0BQM
ER6aleRQakY0NYFhW+x6nMQyZ6MPIOnYKHd4tB5PXe7cTWcB8M7E3uHclm/0
AujE7nlqurMZBwz1cWhLAahkKQclb5Ju9Avg5RPD+J+0S3Gv4ega9UDw+h+f
q20gId96nKGMd8SpQOM26RrxeIqKcoaWQwkxvRflGz5neOZzKCV6vImU1c8+
oFSEcHI6idHwb+WGVwghf4vG+zPF2I65LKVuCUE+4z0TaVqD3/qFgHnLvczT
JP4P0Gnc1w==
"]]}, Annotation[#, "Charting`Private`Tag$13016#2"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwtz3tUk3Ucx/Fna4HCccQEPAQICJMIHDdB2O333UYGQ+RmCsFpoJkIcTM0
OTBYTrl5CCTMg0sGUkCkBQvEUfps3G8BoYKABQ6yiScRiltynqcLfM/5nO+/
75f90ZTw41QMw+Df/fdfxM/kN6/SkKMcJ6fyr76RdgoXhWGzyMDQhgjMpLHr
Yw+FO2F/Iav98poDbv6c7rGKKAZGgxO3fw1Vmcm5MpfxRlNsK4ifvT9h1q/n
+uZsNzLF6OBy+eWSlw+Xd/bpbo8tMlOIeqvYQW95jvfOdv9fDDEzyBD1yRvP
3OV58uIKDGUWYCLVlbjmLfLoJ7K9DTFLKKsIOpIab8+fK1E8NpBZAatmVJIr
FfO7Wm8XGWA7IXHZTaN/ksoPX5yzfgXsoFvbrOeVlvIhb22RKrOHfvO+Y9T5
Rj7LeksvVbMLtBkn0x/ND/KtGy2UVMwRZskmdTxTzzfazzxNBSboDodIn3Mo
aHXCK4gq2w3A0UcnNlqgJylCe6rGCfaMf2mz1OaCHtDCViiYM7xuXpBP3EGo
o1zyEwXehOrlb/PrjcOQipVcTZG5QN2N5LBa/zhU2Z6VQdG4QuFkgAejOBV9
GnkxhIKxQGL9Yv4BMxtJ/yhnUsANVMaRszKbQuQjuC/FwB2K1hqsDl66jG5e
nIzHpt1hmHHt+hVKFXIc1UVgMg9oihKz71R9jRR2c3zMzhMomVW2X5xVIUbi
gjOm8QT/+LJIyWk1KmheNcNivcBPHuk03qFB2P+3F0Z2sLPTLTrRx2LDZ6Ry
LyQEDjscFPai52X0URJ5Aye/ocW2ZQAdnzLXklPesI0rCaoYHESPnG1ukDk+
8KrV/XWT3wdRRLrjFdJ2HygfexyaPj+A+u66nCPxfWC//M21S2e6kXCrVxIp
8YXoe0G56t9wpI5gR5KkL3R+Zs2wU9Yj9wqBiFT6AenZ8/3Myat4nT6ARSI2
pJWwprNoatzWK9SSnGLD2KK1ojqrHf9ceoRG5nAgsWAsuXe9C9/W8948YcuF
hFTm20RgF36e8cEEgXNhODP4gPGHWvxlTFInIeGBQre4GveJCj9Vm95AkDwI
fW14D737IzS3kKkglHxYocVnBwc2oTiuPJdACCRRdUECoRY9zC1MI6YQmBuL
VUMxHWijD2BnpepHproNzRYNOJDFACvXd9xqT1CjjV6ApZBjM0dpFejdh/fo
pJsA1l3XkyN+rt3sF4B7fdgIZ+0HfGTX5BoxJICbgWTe38Ftmx4hDJrFDJQP
aPGAJN0skSKE9H5t858c9aZPCMRE1q1YZSWuaXk6RJiIQFxjVFDq+BXa8Iog
wk9XMsRtRT7UhVbiOxH0zB++oGBp0YZfBFq1AV0RrUH/AL061/Q=
"]]},
Annotation[#, "Charting`Private`Tag$13016#3"]& ]}}, {}}, {
DisplayFunction -> Identity, Ticks -> {Automatic, Automatic},
AxesOrigin -> {0, 0},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, DisplayFunction -> Identity,
PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All,
DisplayFunction -> Identity, AspectRatio ->
NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True},
AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, DisplayFunction :>
Identity, Frame -> {{True, True}, {True, True}}, FrameLabel -> {{
FormBox["\"Jn(X)\"", TraditionalForm], None}, {
FormBox["\"X\"", TraditionalForm], None}},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]],
Method -> {
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange -> {{0, 40}, {-0.21723667652094505`, 0.30228095592007176`}},
PlotRangeClipping -> True, PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}],
FormBox[
FormBox[
TemplateBox[{"\"n=10\"", "\"n=15\"", "\"n=20\""}, "LineLegend",
DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Arial"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"LineLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.368417, 0.506779, 0.709798],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.24561133333333335`, 0.3378526666666667,
0.4731986666666667], FrameTicks -> None, PlotRangePadding ->
None, ImageSize ->
Dynamic[{
Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.368417`", ",", "0.506779`", ",", "0.709798`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.368417, 0.506779, 0.709798];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.368417, 0.506779, 0.709798], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.880722, 0.611041, 0.142051],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.587148, 0.40736066666666665`, 0.09470066666666668],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.880722`", ",", "0.611041`", ",", "0.142051`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.880722, 0.611041, 0.142051];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.880722, 0.611041, 0.142051], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.560181, 0.691569, 0.194885],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.37345400000000006`, 0.461046, 0.12992333333333334`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.560181`", ",", "0.691569`", ",", "0.194885`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.560181, 0.691569, 0.194885];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.560181, 0.691569, 0.194885], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{#, ",", #2, ",", #3}], "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
Editable -> True], TraditionalForm], TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{{3.874868242409746*^9, 3.87486826958778*^9}, {
3.874868315684291*^9, 3.8748683375766706`*^9}, {3.874868795943015*^9,
3.874868845112636*^9}, 3.876236223272531*^9, {3.876247205482535*^9,
3.8762472743398314`*^9}},
CellLabel->"Out[32]=",ExpressionUUID->"0ecdf007-82d7-4354-9690-d69fa3ec911a"],
Cell[BoxData[
TemplateBox[{
GraphicsBox[{{{{}, {},
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwBEQLu/SFib1JlAgAAACAAAAACAAAAJNbiUwAAVEAgV8HDdpMowHO/Q1EA
FFRA+bcL2mgaKMDCqKROAChUQOY7FoigoifAYHtmSQBQVEAHCef83rYmwJsg
6j4AoFRAvC1ZA4/uJMASa/EpAEBVQGsQR/+YmiHAYVRSJwBUVUBLmzncyjUh
wLA9syQAaFVAgRiXKkHSIMBOEHUfAJBVQFiCvLf8DiDAibX4FADgVUALVaX5
fC8dwAAAAAAAgFZAlZXMR0LOF8BP6WD9/5NWQJXYqDzgLRfAntLB+v+nVkB9
0edvJZAWwDylg/X/z1ZA03+3uLNcFcB3Sgfr/x9XQOGaCSdRFhPAxjNo6P8z
V0AhkdzomIsSwBQdyeX/R1dAuPsTSqsDEsCy74rg/29XQKIzuqVH/BDA7pQO
1v+/V0DPVgqRNyAOwD1+b9P/01dASoVXn+Y4DcCMZ9DQ/+dXQL388v2gVwzA
KjqSy/8PWEDVIQJLh6cKwHkj88j/I1hAQpOIjt7YCcDIDFTG/zdYQAbi7guY
EAnAZd8Vwf9fWECYO4i3mpMHwLTIdr7/c1hAkWIlZh3fBsACste7/4dYQDWr
MrZ1MQbAoISZtv+vWEBvbTDeNOsEwO9t+rP/w1hA6m1q9+lSBMA+V1ux/9dY
QNO8RuURwgPAjUC8rv/rWED0VALe3DgDwNwpHaz//1hACkEGj3+3AsBAevbd
"]]}, Annotation[#, "Charting`Private`Tag$13112#1"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6],
Dashing[{Small, Small}]],
LineBox[CompressedData["
1:eJwBEQLu/SFib1JlAgAAACAAAAACAAAAJNbiUwAAVED8gTSYaZQowHO/Q1EA
FFRAdlWx0VwbKMDCqKROAChUQPqHCKeVoyfAYHtmSQBQVEDvM+V21rcmwJsg
6j4AoFRAlJ7sZYvvJMASa/EpAEBVQIP6wvufmyHAYVRSJwBUVUDmsbs90zYh
wLA9syQAaFVADJWs9ErTIMBOEHUfAJBVQBpLzVwJECDAibX4FADgVUDGkfTt
oTEdwAAAAAAAgFZA4r7Ckn7QF8BP6WD9/5NWQHzAaU0fMBfAntLB+v+nVkCE
2fEzZ5IWwDylg/X/z1ZAMUk2mfpeFcB3Sgfr/x9XQKaCvWagGBPAxjNo6P8z
V0BipZur6Y0SwBQdyeX/R1dAXOsjPf0FEsCy74rg/29XQJqqzMGa/hDA7pQO
1v+/V0AfPr/G0yQOwD1+b9P/01dAcTe+03s9DcCMZ9DQ/+dXQGPP8K4sXAzA
KjqSy/8PWECpAJRh9qsKwHkj88j/I1hAXJ2zOzndCcDIDFTG/zdYQEE/xBfZ
FAnAZd8Vwf9fWED5rAkLlJcHwLTIdr7/c1hAfAr+ZOXiBsACste7/4dYQNmY
xm4ANQbAoISZtv+vWECWNp6rE+4EwO9t+rP/w1hAm4J4EVBVBMA+V1ux/9dY
QBX/mKjdwwPAjUC8rv/rWEBfbA9G3zkDwNwpHaz//1hA+xx7hnC3AsDKQPwd
"]]}, Annotation[#, "Charting`Private`Tag$13112#2"]& ]}}, {}}, {
DisplayFunction -> Identity,
Method -> {
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" ->
None}, DisplayFunction -> Identity, DisplayFunction -> Identity,
Ticks -> {Automatic, Quiet[
Charting`ScaledTicks[{Log, Exp}][#, #2, {6, 6}]]& },
AxesOrigin -> {80., -12.289868122491491`}, FrameTicks -> {{Quiet[
Charting`ScaledTicks[{Log, Exp}][#, #2, {6, 6}]]& ,
Charting`ScaledFrameTicks[{Log, Exp}]}, {Automatic, Automatic}},
GridLines -> {None, None}, DisplayFunction -> Identity,
PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All,
DisplayFunction -> Identity,
Method -> {
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None,
"ClippingRange" -> {{{80.00002,
99.99998}, {-12.289868122491491`, -2.339570093757741}}, {{80.00002,
99.99998}, {-12.289868122491491`, -2.339570093757741}}}},
DisplayFunction -> Identity, AspectRatio ->
NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True},
AxesLabel -> {None, None}, AxesOrigin -> {80., -12.289868122491491`},
CoordinatesToolOptions -> {"DisplayFunction" -> ({
Part[#, 1],
Exp[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Part[#, 1],
Exp[
Part[#, 2]]}& )}, DisplayFunction :> Identity,
Frame -> {{True, True}, {True, True}}, FrameLabel -> {{
FormBox["\"Jn(X)\"", TraditionalForm], None}, {
FormBox["\"X\"", TraditionalForm], None}},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]],
Method -> {
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" ->