-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
44 lines (34 loc) · 1.45 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from src.environment import Environment
from src.agent import Agent
from src.display import Display
from src.train import train
from src.evaluate import test
import os
'''setting environment parameter'''
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
def run(test_flag=False, train_flag=True, lr=0.01, epsilon=0.9,
gamma=0.9, episodes=100,filename = '5x5model_test', name='default', ep_min=0.01, ep_dec = 1e-4, batch_size=128, beta_inc=0.1):
'''Initialising parameters for CNN and exploration'''
input_dims = [303]
output_dims = 5
replace_network = 3
memsize = 100000
batch_size = batch_size
epsilon_min = ep_min
epsilon_dec = ep_dec
'''Creating environment and agent objects'''
env = Environment()
agent = Agent(gamma=gamma, epsilon=epsilon, lr=lr,
input_dims=input_dims, n_actions=output_dims, mem_size=memsize, eps_min=epsilon_min,
batch_size=batch_size, eps_dec=epsilon_dec, replace=replace_network, name=name)
'''Begin training'''
if train_flag:
train(episodes, env, agent, beta_inc, replace_network, filename)
'''Evaluation'''
if test_flag:
agent.load_models()
test(env, agent, beta_inc, filename)
if __name__ == '__main__':
run(test_flag=True, train_flag = False, episodes=600,
lr=0.001, epsilon=0.8, gamma=0.999, filename = '37x37model_test',
name='default', batch_size=64, ep_min=0.00033, beta_inc=0.01, ep_dec=0.005)