-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgridsearch2.py
228 lines (184 loc) · 8.29 KB
/
gridsearch2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
"""
Author: Ruixian Zhao
This gridsearch script 2 contains all the attampts among the adjusted on model 1 in IMDB dataset.
"""
import numpy as np
import tensorflow as tf
from tensorflow import keras
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
# prepare the dataset
from helper1 import get_dataset, prepare_imdb
# prepare functions
from helper2 import *
from helper3 import *
from keras.models import Sequential
from keras.layers import Embedding, GlobalAveragePooling1D, Dense, Flatten
vocab_size = 10000
seed = 7
np.random.seed(seed)
from keras.models import Sequential
from keras import regularizers
from keras.layers import Embedding, Conv1D, Dense, Flatten, MaxPooling1D, Dropout
vocab_size = 10000
max_words = 256
seed = 7
np.random.seed(seed)
(train_data, train_labels), (test_data, test_labels), (x_val, partial_x_train), (y_val, partial_y_train) = prepare_imdb(dataset)
from sklearn.model_selection import GridSearchCV
from keras.wrappers.scikit_learn import KerasClassifier
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
warnings.filterwarnings("ignore")
'''
def create_model():
model = Sequential()
model.add(Embedding(vocab_size, 32 , input_length=max_words))
model.add(Conv1D(filters=32, kernel_size=3, padding='same', activation='relu'))
#model.add(MaxPooling1D(pool_size=2))
model.add(Flatten())
model.add(Dense(16, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
model = Sequential()
model.add(Embedding(vocab_size, 16))
model.add(GlobalAveragePooling1D())
model.add(Dense(16, activation=tf.nn.relu))
model.add(Dense(1, activation=tf.nn.sigmoid))
learn_rate = [0.001, 0.01, 0.1, 0.2, 0.3]
momentum = [0.0, 0.2, 0.4, 0.6, 0.8, 0.9]
param_grid = dict(learn_rate=learn_rate, momentum=momentum)
grid = GridSearchCV(estimator=model, param_grid=param_grid, n_jobs=-1)
optimizer = ['SGD', 'RMSprop', 'Adagrad', 'Adadelta', 'Adam', 'Adamax', 'Nadam']
init_mode = ['uniform', 'lecun_uniform', 'normal', 'zero', 'glorot_normal', 'glorot_uniform', 'he_normal', 'he_uniform']
param_grid = dict(init_mode=init_mode)
activation = ['softmax', 'softplus', 'softsign', 'relu', 'tanh', 'sigmoid', 'hard_sigmoid', 'linear']
param_grid = dict(activation=activation)
dropout_rate = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
param_grid = dict(dropout_rate=dropout_rate)
'''
a=0
b=1
from keras.optimizers import Adamax, RMSprop
if b:
def create_model():
model = Sequential()
model.add(Embedding(vocab_size, 16))
model.add(GlobalAveragePooling1D())
model.add(Dense(16, activation=tf.nn.relu))
model.add(Dense(1, activation=tf.nn.sigmoid))
optimizer = Adamax(lr=0.002)
model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy'])
return model
batch_size = [128, 256, 512]
epochs = [5, 10, 15, 20]
# Best: 0.874800 using {'batch_size': 128, 'epochs': 20}
batch_size = [32, 64, 100, 128]
epochs = [18, 22, 24]
#Best: 0.877800 using {'batch_size': 100, 'epochs': 24}
batch_size = [90, 100, 110]
epochs = [24, 25, 26, 27]
# Best: 0.877533 using {'batch_size': 110, 'epochs': 24}
param_grid = dict(batch_size=batch_size, epochs=epochs)
model = KerasClassifier(build_fn=create_model, verbose=0)
epochs=24
batch_size=100
if a:
def create_model(optimizer='Adam'):
model = Sequential()
model.add(Embedding(vocab_size, 16))
model.add(GlobalAveragePooling1D())
model.add(Dense(16, activation=tf.nn.relu))
model.add(Dense(1, activation=tf.nn.sigmoid))
model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy'])
return model
optimizer = ['SGD', 'RMSprop', 'Adagrad', 'Adadelta', 'Adam', 'Adamax', 'Nadam']
param_grid = dict(optimizer=optimizer)
model = KerasClassifier(build_fn=create_model, epochs=epochs, batch_size=batch_size, verbose=0)
# Best: 0.878000 using {'optimizer': 'RMSprop'}
if a:
def create_model(learn_rate=0.001):
model = Sequential()
model.add(Embedding(vocab_size, 16))
model.add(GlobalAveragePooling1D())
model.add(Dense(16, activation=tf.nn.relu))
model.add(Dense(1, activation=tf.nn.sigmoid))
optimizer = RMSprop(lr=learn_rate)
model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy'])
return model
learn_rate = [0.001, 0.002, 0.005, 0.01,0.02]
learn_rate = [0.0015, 0.0005, 0.001]
param_grid = dict(learn_rate=learn_rate)
model = KerasClassifier(build_fn=create_model, epochs=epochs, batch_size=batch_size, verbose=0)
# Best: 0.878133 using {'learn_rate': 0.001}
#Best: 0.876733 using {'learn_rate': 0.0005}
learn_rate=0.001
if a:
def create_model(init_mode='uniform'):
model = Sequential()
model.add(Embedding(vocab_size, 16))
model.add(GlobalAveragePooling1D())
model.add(Dense(16, kernel_initializer=init_mode, activation='relu'))
model.add(Dense(1, kernel_initializer=init_mode, activation='sigmoid'))
optimizer = RMSprop(lr=learn_rate)
model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy'])
return model
init_mode = ['uniform', 'lecun_uniform', 'normal', 'zero', 'glorot_normal', 'glorot_uniform', 'he_normal', 'he_uniform']
param_grid = dict(init_mode=init_mode)
model = KerasClassifier(build_fn=create_model, epochs=epochs, batch_size=batch_size, verbose=0)
# Best: 0.878867 using {'init_mode': 'he_normal'}
init_mode='he_normal'
if a:
def create_model(activation='relu'):
model = Sequential()
model.add(Embedding(vocab_size, 16))
model.add(GlobalAveragePooling1D())
model.add(Dense(16, kernel_initializer=init_mode, activation=activation))
model.add(Dense(1, kernel_initializer=init_mode, activation='sigmoid'))
optimizer = RMSprop(lr=learn_rate)
model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy'])
return model
activation = ['softmax', 'softplus', 'softsign', 'relu', 'tanh', 'sigmoid', 'hard_sigmoid', 'linear']
param_grid = dict(activation=activation)
model = KerasClassifier(build_fn=create_model, epochs=epochs, batch_size=batch_size, verbose=0)
# Best: 0.880533 using {'activation': 'softplus'}
activation='softplus'
if a:
def create_model(neurons=1):
model = Sequential()
model.add(Embedding(vocab_size, 16))
model.add(GlobalAveragePooling1D())
model.add(Dense(neurons, kernel_initializer=init_mode, activation=activation))
model.add(Dense(1, kernel_initializer=init_mode, activation='sigmoid'))
optimizer = RMSprop(lr=learn_rate)
model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy'])
return model
neurons = [8, 10, 16, 32, 64, 128, 256, 512]
neurons = [30, 31, 32, 33, 34, 35, 36]
neurons = [32]
param_grid = dict(neurons=neurons)
model = KerasClassifier(build_fn=create_model, epochs=epochs, batch_size=batch_size, verbose=0)
#Best: 0.881667 using {'neurons': 32}
neurons = 32
from keras.constraints import maxnorm
if a:
def create_model(weight_constraint=1):
model = Sequential()
model.add(Embedding(vocab_size, 16))
model.add(GlobalAveragePooling1D())
model.add(Dense(neurons, kernel_initializer=init_mode, activation=activation, kernel_constraint=maxnorm(weight_constraint)))
model.add(Dense(1, kernel_initializer=init_mode, activation='sigmoid'))
optimizer = RMSprop(lr=learn_rate)
model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy'])
return model
weight_constraint = [1, 2, 3, 4, 5]
param_grid = dict( weight_constraint=weight_constraint)
model = KerasClassifier(build_fn=create_model, epochs=5, batch_size=128, verbose=0)
#Best: 0.787533 using {'dropout_rate': 0.0, 'weight_constraint': 4}
weight_constraint=4
grid = GridSearchCV(estimator=model, param_grid=param_grid, n_jobs=-1)
grid_result = grid.fit (partial_x_train, partial_y_train)
# summarize results
print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))
print()