Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity.
Tags: Linked List, Divide and Conquer, Heap
题意是合并多个已排序的链表,分析并描述其复杂度,我们可以用分治法来两两合并他们,假设 k
为总链表个数,N
为总元素个数,那么其时间复杂度为 O(Nlogk)
。
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
class Solution {
public ListNode mergeKLists(ListNode[] lists) {
if (lists.length == 0) return null;
return helper(lists, 0, lists.length - 1);
}
private ListNode helper(ListNode[] lists, int left, int right) {
if (left >= right) return lists[left];
int mid = left + right >>> 1;
ListNode l0 = helper(lists, left, mid);
ListNode l1 = helper(lists, mid + 1, right);
return merge2Lists(l0, l1);
}
private ListNode merge2Lists(ListNode l0, ListNode l1) {
ListNode node = new ListNode(0), tmp = node;
while (l0 != null && l1 != null) {
if (l0.val <= l1.val) {
tmp.next = new ListNode(l0.val);
l0 = l0.next;
} else {
tmp.next = new ListNode(l1.val);
l1 = l1.next;
}
tmp = tmp.next;
}
tmp.next = l0 != null ? l0 : l1;
return node.next;
}
}
还有另一种思路是利用优先队列,该数据结构用到的是堆排序,所以对总链表个数为 k
的复杂度为 logk
,总元素为个数为 N
的话,其时间复杂度也为 O(Nlogk)
。
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
class Solution {
public ListNode mergeKLists(ListNode[] lists) {
if (lists.length == 0) return null;
PriorityQueue<ListNode> queue = new PriorityQueue<>(lists.length, new Comparator<ListNode>() {
@Override
public int compare(ListNode o1, ListNode o2) {
if (o1.val < o2.val) return -1;
else if (o1.val == o2.val) return 0;
else return 1;
}
});
ListNode node = new ListNode(0), tmp = node;
for (ListNode l : lists) {
if (l != null) queue.add(l);
}
while (!queue.isEmpty()) {
tmp.next = queue.poll();
tmp = tmp.next;
if (tmp.next != null) queue.add(tmp.next);
}
return node.next;
}
}
如果你同我们一样热爱数据结构、算法、LeetCode,可以关注我们 GitHub 上的 LeetCode 题解:LeetCode-Solution