-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreferences.bib
52 lines (45 loc) · 1.87 KB
/
references.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
@article{alcantarilla2011fast,
title={Fast explicit diffusion for accelerated features in nonlinear scale spaces},
author={Alcantarilla, Pablo F and Solutions, T},
journal={IEEE Trans. Patt. Anal. Mach. Intell},
volume={34},
number={7},
pages={1281--1298},
year={2011}
}
@inproceedings{zhang2018learning,
title={Learning to detect features in texture images},
author={Zhang, Linguang and Rusinkiewicz, Szymon},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={6325--6333},
year={2018}
}
@inproceedings{zhang2017learning,
title={Learning discriminative and transformation covariant local feature detectors},
author={Zhang, Xu and Yu, Felix X and Karaman, Svebor and Chang, Shih-Fu},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={6818--6826},
year={2017}
}
@inproceedings{choi2020stargan,
title={Stargan v2: Diverse image synthesis for multiple domains},
author={Choi, Yunjey and Uh, Youngjung and Yoo, Jaejun and Ha, Jung-Woo},
booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition},
pages={8188--8197},
year={2020}
}
@inproceedings{choi2018stargan,
title={Stargan: Unified generative adversarial networks for multi-domain image-to-image translation},
author={Choi, Yunjey and Choi, Minje and Kim, Munyoung and Ha, Jung-Woo and Kim, Sunghun and Choo, Jaegul},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={8789--8797},
year={2018}
}
@inproceedings{reed2016generative,
title={Generative adversarial text to image synthesis},
author={Reed, Scott and Akata, Zeynep and Yan, Xinchen and Logeswaran, Lajanugen and Schiele, Bernt and Lee, Honglak},
booktitle={International conference on machine learning},
pages={1060--1069},
year={2016},
organization={PMLR}
}