-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfast.py
79 lines (56 loc) · 2.16 KB
/
fast.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
from fastapi import FastAPI, File, UploadFile, Request
from fastapi.templating import Jinja2Templates
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import HTMLResponse
import model
import check
import uvicorn
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
templates = Jinja2Templates(directory="templates")
@app.get("/",response_class=HTMLResponse)
def main(request: Request):
return templates.TemplateResponse("index.html", {"request": request})
@app.post("/upload", response_class=HTMLResponse)
async def upload(request: Request, file: UploadFile = File(...)):
try:
contents = await file.read()
with open("./test_images/uploaded.jpg", "wb") as f:
f.write(contents)
checked=check.check_face_exist('test_images/', 'uploaded.jpg')
if checked==True:
prediction = model.model_sprint()
if prediction=="deepfake":
alert_type="deepfake"
else:
alert_type="real"
else:
alert_type=None
print(check.check_face_exist('test_images/', 'uploaded.jpg'))
return templates.TemplateResponse("index.html", {"request": request,"alert_type":alert_type})
except Exception as e:
return templates.TemplateResponse("index.html", {"request": request, "error": str(e)})
finally:
await file.close()
if __name__ == "__main__":
uvicorn.run("fast:app", host="0.0.0.0", port=8000,log_level="debug",reload=True)
#first iteration
# @app.post("/upload",response_class=HTMLResponse)
# async def upload(request: Request,file: UploadFile = File(...)):
# try:
# contents =file.file.read()
# with open("./test_images/uploaded.jpg", "wb") as f:
# f.write(contents)
# except Exception:
# return {"message": "There was an error uploading the file"}
# finally:
# file.file.close()
# prediction=model.model_sprint()
# print(prediction)
# return templates.TemplateResponse("index.html", {"request": request,"predicted":"fake"})