forked from jantiegges/Emotion-Classification-from-Text
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
113 lines (91 loc) · 4.45 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import itertools
import pandas as pd
from torch.utils.data import DataLoader, TensorDataset
from sklearn.metrics import accuracy_score
from utils.data_preparation import naive_bayes_preprocessing, bert_preprocessing
from models.naive_bayes import NaiveBayes
from models.bert import Bert
def nb_grid_search(params):
results_list = []
param_combinations = itertools.product(params['alpha_prior'], params['alpha_likelihood'], params['use_bigrams'], params['remove_stopwords'])
for alpha_prior, alpha_likelihood, use_bigrams, remove_stopwords in param_combinations:
processed_data, _ = naive_bayes_preprocessing(
remove_stopwords=remove_stopwords,
use_bigrams=use_bigrams
)
X_train, y_train = processed_data['train']
X_val, y_val = processed_data['validation']
nb = NaiveBayes()
nb.fit(X_train, y_train, alpha_prior=alpha_prior, alpha_likelihood=alpha_likelihood)
predictions = nb.predict(X_val)
acc = nb.evaluate_acc(y_val, predictions)
results_list.append({
'alpha_prior': alpha_prior,
'alpha_likelihood': alpha_likelihood,
'use_bigrams': use_bigrams,
'remove_stopwords': remove_stopwords,
'val_accuracy': acc
})
results_df = pd.DataFrame(results_list)
results_df = results_df.sort_values(by='val_accuracy', ascending=False).reset_index(drop=True)
results_df.to_pickle('out/nb_grid_search_results.pkl')
return results_df
def bert_grid_search(params, exp_name):
## Data Preparation ##
bert_processed_data, tokenizer = bert_preprocessing()
input_ids_train, attention_mask_train, y_train = bert_processed_data['train']
input_ids_val, attention_mask_val, y_val = bert_processed_data['validation']
input_ids_test, attention_mask_test, y_test = bert_processed_data['test']
train_dataset = TensorDataset(input_ids_train, attention_mask_train, y_train)
val_dataset = TensorDataset(input_ids_val, attention_mask_val, y_val)
test_dataset = TensorDataset(input_ids_test, attention_mask_test, y_test)
results_list = []
param_combinations = itertools.product(params['epochs'], params['batch_size'], params['lr'], params['weight_decay'],
params['fine_tune_last_layers'])
for epochs, batch_size, lr, weight_decay, fine_tune_last_layers in param_combinations:
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
train_loader_eval = DataLoader(train_dataset, batch_size=batch_size)
val_loader = DataLoader(val_dataset, batch_size=batch_size)
test_loader = DataLoader(test_dataset, batch_size=batch_size)
bert = Bert()
bert.fit(train_loader, epochs, lr, weight_decay=weight_decay, fine_tune_last_layers=fine_tune_last_layers)
y_pred = bert.predict(val_loader)
val_accuracy = accuracy_score(y_val, y_pred)
results_list.append({
'epochs': epochs,
'batch_size': batch_size,
'lr': lr,
'weight_decay': weight_decay,
'fine_tune_last_layers': fine_tune_last_layers,
'val_accuracy': val_accuracy
})
results_df = pd.DataFrame(results_list)
results_df = results_df.sort_values(by='val_accuracy', ascending=False).reset_index(drop=True)
results_df.to_pickle(f'out/_grid_search_results_{exp_name}.pkl')
return results_df
if __name__ == '__main__':
nb_search = False
bert_search = False
# Naive Bayes Grid Search
if nb_search:
params = {
'alpha_prior': [0, 1, 10, 100, 1000, 10000, 100000],
'alpha_likelihood': [0.0, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0],
'use_bigrams': [True, False],
'remove_stopwords': [True, False]
}
num_combinations = len(list(itertools.product(*params.values())))
print(f"The number of combinations is: {num_combinations}")
grid_search_results = nb_grid_search(params)
# BERT grid search
if bert_search:
params = {
'epochs': [3],
'batch_size': [32, 64, 128],
'lr': [1e-5, 2e-5, 3e-5],
'weight_decay': [0.01, 0.001],
'fine_tune_last_layers': [True]
}
num_combinations = len(list(itertools.product(*params.values())))
print(f"The number of combinations is: {num_combinations}")
grid_search_results = bert_grid_search(params, exp_name='last_layers')