-
Notifications
You must be signed in to change notification settings - Fork 3
/
GNAT.CopyBranchIDTool.pyt.xml
474 lines (474 loc) · 41.7 KB
/
GNAT.CopyBranchIDTool.pyt.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
<?xml version="1.0"?>
<metadata xml:lang="en"><Esri><CreaDate>20150820</CreaDate><CreaTime>10472300</CreaTime><ArcGISFormat>1.0</ArcGISFormat><SyncOnce>TRUE</SyncOnce><ModDate>20170213</ModDate><ModTime>134128</ModTime><scaleRange><minScale>150000000</minScale><maxScale>5000</maxScale></scaleRange><ArcGISProfile>ItemDescription</ArcGISProfile></Esri><dataIdInfo><idCitation><resTitle>Copy Stream BranchIDs</resTitle></idCitation><idAbs><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN>The </SPAN><SPAN STYLE="font-weight:bold;">Copy Stream Branch IDs</SPAN><SPAN> tool moves the BranchID from one stream network polyline feature class to another. The stream networks may have identical geometry, or similar geometry (i.e. stream network to valley bottom centerline).</SPAN></P><P><SPAN>This step is required if using the "Transfer by Branch" method in the </SPAN><A href="https://github.com/SouthForkResearch/gnat/wiki/Transfer-Line-Attributes" target="_blank"><SPAN>Transfer Line Attributes </SPAN></A><SPAN>tool, as both networks will need to have common stream branches.</SPAN></P><P><SPAN>More detailed documenation for this tool is available </SPAN><A href="https://github.com/SouthForkResearch/gnat/wiki/Copy-Stream-BranchIDs" target="_blank"><SPAN>here</SPAN></A><SPAN>.</SPAN></P><P><SPAN /></P></DIV></DIV></DIV></idAbs><searchKeys><keyword>GNAT</keyword><keyword>stream</keyword><keyword>branch</keyword></searchKeys><idCredit>Kelly Whitehead, South Fork Research, Inc.</idCredit></dataIdInfo><distInfo><distributor><distorFormat><formatName>ArcToolbox Tool</formatName></distorFormat></distributor></distInfo><tool name="CopyBranchIDTool" displayname="Copy Stream BranchIDs" toolboxalias="GNAT" xmlns=""><parameters><param name="InputStreamNetwork" displayname="Input Stream Network with BranchID" type="Required" direction="Input" datatype="Feature Layer" expression="InputStreamNetwork"><dialogReference><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN>The stream network polyline feature class that contains the stream BranchID to be transferred. This network should have already been generated by the </SPAN><SPAN STYLE="font-weight:bold;">Generate Stream Branches </SPAN><SPAN>tool.</SPAN></P></DIV></DIV></DIV></dialogReference></param><param name="fieldBranchID" displayname="Stream Branch ID Field" type="Required" direction="Input" datatype="String" expression="fieldBranchID"><dialogReference><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN>Field containing the stream branch ID values. The default output from the </SPAN><SPAN STYLE="font-weight:bold;">Generate Stream Branch </SPAN><SPAN>tool is </SPAN><SPAN STYLE="font-style:italic;">BranchID</SPAN><SPAN>.</SPAN></P></DIV></DIV></DIV></dialogReference></param><param name="TargetLineNetwork" displayname="Input Target Line Network" type="Required" direction="Input" datatype="Feature Layer" expression="TargetLineNetwork"><dialogReference><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN>This is the stream network polyline feature class that the stream BranchID will be transferred to.</SPAN></P></DIV></DIV></DIV></dialogReference></param><param name="inputSearchRadius" displayname="Search Radius" type="Optional" direction="Input" datatype="Double" expression="{inputSearchRadius}"/><param name="outputStreamOrderFC" displayname="Output Line Network with Branch ID" type="Required" direction="Output" datatype="Feature Class" expression="outputStreamOrderFC"><dialogReference><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN>File name and directory path (in a file geodatabase) of a new polyline feature class containing the transferred stream branch ID. Field name will be the same as the BranchID field of the input.</SPAN></P></DIV></DIV></DIV></dialogReference></param><param name="ScratchWorkspace" displayname="Scratch Workspace" type="Optional" direction="Input" datatype="Workspace" expression="{ScratchWorkspace}"><dialogReference><DIV STYLE="text-align:Left;"><DIV><DIV><UL><LI><P><SPAN>Can be a file geodatabase or folder.</SPAN></P></LI></UL><UL><LI><P><SPAN>If not explicitly designated, the tool will use the "in_memory" workspace by default. Temporary files will not be available for review, but the processing speed will likely be much faster.</SPAN></P></LI></UL></DIV></DIV></DIV></dialogReference></param></parameters><summary><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN>The </SPAN><SPAN STYLE="font-weight:bold;">Copy Stream Branch IDs</SPAN><SPAN> tool moves the BranchID from one stream network polyline feature class to another. The stream networks may have identical geometry, or similar geometry (i.e. stream network to valley bottom centerline).</SPAN></P><P><SPAN>This step is required if using the "Transfer by Branch" method in the </SPAN><A href="https://github.com/SouthForkResearch/gnat/wiki/Transfer-Line-Attributes" target="_blank"><SPAN>Transfer Line Attributes </SPAN></A><SPAN>tool, as both networks will need to have common stream branches.</SPAN></P><P><SPAN>More detailed documenation for this tool is available </SPAN><A href="https://github.com/SouthForkResearch/gnat/wiki/Copy-Stream-BranchIDs" target="_blank"><SPAN>here</SPAN></A><SPAN>.</SPAN></P><P><SPAN /></P></DIV></DIV></DIV></summary></tool><mdHrLv><ScopeCd value="005"/></mdHrLv><Binary><Enclosure rel="side-panel-help"><Data EsriPropertyType="Image" OriginalFileName="thumbnail.jpg">/9j/4AAQSkZJRgABAQEAeAB4AAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsK
CwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQU
FBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAIwAiQDASIA
AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA
AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3
ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm
p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA
AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx
BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK
U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3
uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9U6KK
KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo
AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA
ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi
iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK
KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo
AKKqatq9joOny32p3tvp1lFjzLm7lWKNMkKMsxAGSQPqRUtneQahaQXVrNHc206LLFNC4dJEYZVl
YcEEEEEUrq9iuV25raE1FFFMkKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK
KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo
AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAqatpFjr2ny2Op2VvqNlLjzLa7iW
WN8EMMqwIOCAfqBXivw11BPgr8QNT+HerPJaaBqd0bzwrdT7jCwfBktA7O2CrFQqnBZizHmRAfda
434ofCfw/wDFzRYtO12GQNA/mW95asEngPG4IxBGGAwQQQeDjIUjCrBu04fEv6sehha8IqVGs37O
W9uj6NenXyudlRXiFt4d+OPguG8h0/xD4e8aWUMCC1/tqGSG7bYnKjZgFmPG6SRs4BJXLVk/8Jp+
0Z/0IPh7/v8Ap/8AJdR9YtvB/df8jZZfz/BWg1/it+Dsz6ForxXQ9U+PurWjzXWkeCdFkVygt757
hnYYB3AwySLjkjk54PHQmpqfxg+Ifwtkubz4heEbO98No8cf9seF5SwjLKTkxSvuILlUy3lgHPLb
lBf1iKV5JpehP9n1JS5ITjKXZSWvp3+R7rRXO+C/iF4c+IenteeHdXt9UhT/AFixkrJFksBvjYBk
yVbG4DIGRkV0VdCkpK6eh504SpycJqzXRhWdpfiPSdcutRttN1Sz1C402f7LfQ2twkr2s20N5coU
ko+1lba2Dhge9P1ywsNU0a+s9Viin0yeF47qKf8A1bxEEOr+qkZBB4IzXyJ8K/hvoOtfs8QS+HNA
s9SutSv73xtafDvTtTj0Sy1G1uJ5BYpcJHFnyFhSLaCmxpI13ZxkJy5eZvZL8b/5KT+RNtFbe/6f
52XzPsmivJv2VNU1HXfgD4S1TVNUfVbm/hlu0eW4muZLeGSZ2itnmmAlmeFCsLSSDc5jLHk16zWk
o8snHsRF3V/6/r117hRRRUlBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ
AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAB
RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5N4m/Zg8B6/qEeoWdlceGNTjnjnS80Gf7MyMgwu
1MGNOQrZVQcrnPJzkp8P/jH4R1aGPw7460/xBoMPmMlv4pjYzfMz4SSVEaSTaCpDb1yRjaFGD7fR
XO8PTveOj8tD0o5hiOXlqPnXaS5vuvqvkeC23xz8eeBfsknxM8B/2bpU05WbW9Il86G0jO1VMkaN
Jj52HJcEg/KrFcGfxJq3wT+Nv2fVNR8UR211ZpLZJeWuv3mgXhifazxM0UsEskRIU7WyhK+oNe51
zF58L/BmoXc91deEdCubmd2llmm02F3kdjlmZiuSSSSSan2dSOildef/AAP8i3XwtXWdNwl/den3
O/5/Im8BN4Xh8L2Wn+DptMfQNMjWxt4dIlSSC3VFG2IbCQMKV49CPWuhryBv2XfB9hdx3Xhy613w
bchGikm0LVJI3mRip2u0m84BUHAx75wMZ9t4R+L/AMNLa0k0nxPb/Eeyhys+l6vELa5ZTIpJjuC7
FmwX5kfCjorcAU6tW96kb+a1/wCCT9Vw09MPVt2Uly/irx+9pHt9FeTeC/2itG1zxK3hXxFYXHg/
xck/2Y6bfEPHJISxVY5lGGyoQgsFDGRQm/IJ9ZrSFSNRXizkrYerh5ctWNv1809mvNBRRRWhzhRR
RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF
ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA
FFFFABRRRQAUV41400OC8+PGhXtvb32q3+jaTeay1ib+RojKVW3tkjheTyo2bdP8+0cry2M1lfDb
VPF2lvdWer3fi668ZW+nvq3/AAi2sT6WLO9aV2DCC4iWSRIo5SFAaUFVKfKRha9tZbz0VVhUV7J2
ej1bWmr0Vk7uys1ex50sW4VHTlB72uteieu1t7Jat9NdD3qivOfhZ8UJfHGra3pFxPoup3OkxW8k
up+Hbs3Fm7SmTMJJHySRmMgjccgq+E3bF6xfGvh9vFzeFV1zTm8Trafb20YXSG8W23BPOMWdwTcQ
N2MZ4rzcRh6mGqujUXvf5q/5a/mddKtCtDnht/S/MzPiN8LfDnxU0lLHxBY/aPJ3m2uY2KTW7Mu0
sjD8DtOVJVcg4Feb+CfEOpfBb4gaf8NNevJNU8O6ihbw5rNydrwgZAs5WOFcjAVduSN8YwA6rH7r
Xjf7VWmxx/DIeJ4D5Gt+G722v9OuljRmjkMyIQdynKncGK9CUTOQMV5daKinWjuvxXVHvYGq60lg
6rvCWi8pPZrtrv3Vz2Siqmkata69pNlqdjL59leQJcwS7Su+N1DK2CARkEcEZq3XXueQ04uzCiii
gQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA
BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF
cz8QNe8R+HdGhufDHhb/AIS6/a4WN7H+0Y7LZGVYmTfICDghRt6/NntXTUVUWk7tXA8A1jxl+0RN
bzahpXgDwzZQm4EMej3l+Li8VfLBMrSrNHEyFsjAIYZHykDcYf8AhrF/AUtjpfxT8F6x4T1eaRYj
d2iJc6fINkZeZJA+SFL5ZE8wqMDLNxX0LRXV7am9J01byun+pfMuqPLdF8U/DH4/afrVpo2p2eo3
N5AsF21uGtdQ8uJg0b/Mqy7UeQFWwVDMQOcirMnwx1jQ7i413SvEd3r/AIpYQQmbxEYEjmtEdma0
zBbqsSuXYmRY2fcFzuA20/4kfs+eA/ipLLda7oUR1R42QanZsYLkEoqh2ZcCQqFXb5gYDGMYJB5P
Tfgf8S/Dv2uDSPjdqYsJLh5ok1bR4tRnRTgBTNLIScADoFXOSFGTXXTxHLHlhUsu0lddNLpPR2V9
Fey7I554elUd3o/67dunZ6o7f4Y+DtV8N3nibUtVi0/T5davUul0nSJXltbXbEkZYO0cZZ3K7mOx
R0GCQWPiuveBIrXxJ8VptGEHwz1Hxbd23g/RtYk0mTbPPJE1xdXqpGELySvNInnM43PbJl+FB6y4
uP2hfBcVsiW3hT4hWkV2UeSMtZahcW5dm3tuZIIztwvyh8Ejh8EnL1L9ozwVr2n6z4S+Nfg4eF2L
qG0TXrFtUs7+IOdsi4hKuokjODtKnapVm524YilVxU3U0lolZdtFb+b4VbW+93c0o0vYw5YPrf53
bvbT7Wv4aHI+B9NT4c+DvGun6frd34AtPCWsppmr3/gewvdVt54hbx3CHTdLmN3FYNm5XzwkM3+r
kJOW8yP374Z6hf8AxP8Ag1pN14tsoBNrmnN9qhtn2pNBKGCMCjtt8yIqxCsdpcgHjNc3efs8+GNR
t9MvvAGuXnw1sjpjWCf8IJBp0VrdWcshmUBJbaaNRvkkdXiCMTKx3HIx6Z4V8M6b4K8M6T4f0a3+
yaTpVrFZWlvuZvLhjQIi5YknCgckk1xNuUXz76fhdN/PR2Wiu10TYlySi4aWv+lvmtddXtr0Xinw
o1jUvgr42b4Y+IzHF4duXml8L6pM3MwaXd9nZwoVpDvJOdpDcDcJI6+gK434sfDDTvi54Pm0LUZZ
LZg4uLW6i5MEyhgr7cgMMMwKnqGOCDhhxvwp+OH23VrzwV44nt9K8baXP9kMkn7mHU/mCpJFuC/M
+VITA3BgyDBKpwwfsH7OT06f5f5HtVo/XoPE0176+NL/ANKXr9rs9dmeyUUUV1njBRRRQAUUUUAF
FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU
UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR
QAVS1jRdP8RabNp+q2FrqdhNjzLW8hWWJ8MGG5GBBwQDyOoFXaKd7aoDwbVv2R9E0+K7fwB4m8Q/
Dq7uI40ddK1CV7aUo5O+VGcO52syj94AMg467tP/AIVf8Xv+i3f+WnZ//FV7NRXT9aqv4nf1Sf5o
rmZ4N4g+BvxT8TWaWt38c76GNJBIG0/Q47KTIBGC8MyMRyflJx0OMgVwuu/sO694ouI7jWfi1qGr
3MahEnvtOeaRVGcKGa5JA+ZuM45PrX1nXm/xU8RR6l9m8G6be7dW1O5hguUhR3eC3bJdztIHQDKk
/cJyMHNTLGVIx6f+Ax/yMa2Nlgqbqxdnsul30XzPn/4dfGz4n/C+21bSNd05PiJpmlCaX+07e8eS
cIGBaQzEMzwrluWTI3feCgCvov4c/HDwj8T7SBtK1OO3v5neMaVfSJFeZUFiRHuO4bfmypIxnnII
HZaVpVpoenQWFhAltaQLsjiToB/Uk5JJ5JJJrzfxj+zX4L8X602tLBeaDrj3S3j6lo9yYZTIP4gC
GRSWwxZVDFhnOSc8FR15TdRNO+62+49LCTo1KKp41Wn/ADQTt6NN6+qtfsep0V4Lq/h34x/C22vb
rw54ht/HmiWsDvFpuuQtJf8AMhbAZMNMyr3MgzkhY8hBUuh/tYaRbXb2PjvQNV8A35QzRJfW8sqS
R5AUjEYfJO/+Db8h+bPFR9YjF2qe6/P/AD2Oj+zas48+HaqL+7v/AOAuz/BnutFcx4O+J3hX4gRq
3h/XbPUpGRpfs6SbZ1RW2lmibDqM45KjqPUV09dEZKSvF3PNnTnTlyzTT8woooqjMKKKKACiiigA
ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi
iigAooooAKKKKACiiigAooooAKKKKACiiigDynxprHijR/ilorPf28egXVpfwWmnW7FGlmS3WUSz
SOQoOUdVXGFALEnd8nL/AAX0268D+IPD8WvaDav4h8TaTl/E0XiK41me5aCONmEpmjURo28sBE7J
kYHBBr0nxNN4Q1rW9IuNS1+xhutEuZpFtzeQqGZ4ZIHjlVskjbI3y8cgZ6Yrk/DmrfCbwDq08+lX
Xk3UataxszXd1HbRbsmK237khiJAOyHah2rxhVx78cyw0MK6MtG42dtLtOVrtSXeLd1K9uh89WlT
jXVSVWKSk3rJdVHZNPs1pa1/Nl/4U2N/ovxA8f6bqerz63es1hfPdTIsYzLCyFUReEjBhIVckgDk
sSWb1KvNbf4nfDu11691mLUtupXsENtPN5Fyd8cRcxrt24GDK/IGTu5zgVNefG3Rrme2svDsFx4j
1S5bZFbQo0K5yM7mdRgY3HIBA2nOBzXj4vGU8RV9on0ium6ik7Jea0OijjcJRg4+2i9Xs7vVt7at
vXzPRKqalq1jo0Czahe29jCzbBJcyrGpbBOMsRzgH8q83j8O/EnxWkp1XXrfw1azLn7Lp8YeWNlI
wNwOQDgtkSHrjGCQNay+Cvh2LUZL/UGvteu2ZH83VLgykFemcAbhjAw2RgAetcXNKXwx+80WKxNb
+DRsu8nb8Fd/fY7LTdWsdZgabT723voVbYZLaVZFDYBxlSecEfnVuvN9U+Cel2nlX3heSbQNatcv
bzLM8kbNxxIH3HaRkcdmOQw4rW8BePZ/E11qGlarp/8AZOvadtE9sZARICOXQddufqMMnzHdTU3f
lmtS6eKqRmqOJjyyezTun87Kz8n8rnZUUUVqekZ/iDXrLwvoOpazqUjw6dp1tJd3MkcTyssUalnI
RAWYgA/KoJPQAmuM8NfEDXviR4F1jV9A8L3WhTT2xk8PTeJZY4o9QDxboZ3SFpJYYySCVkRZApGU
VsqOO+PXgPxFb+JbL4p6Rf3Opy+E7Jo4/ClvGES/s5XzqUcjEnzXeJIWiTACyWy8necebfC34I6F
/a3gO88AeAorHT9KvYNUs/iq+oWk9xq+kmEhbcypi6kZ0kEPkyxiJIo1IkLIi0oxVS8ZdbL0u3q/
VarrpJWbSHJ8lmtbXfrZbL0ej6arXc9b/Z/1rXPDy6l8MfGesz694r8MRxPDrV2u2TWdOkB8m65J
LOrB4ZDknfFuP+sGfYq868ZfEHwP4Z8RW2o3lvban4js45LSO4tLeOW6tonYGSPzTjYpaJNybskq
pI4BrOurz4gfESGGC20//hC9Mk2tLdSzH7V8r4IUDay56gFVzt+9hsGJVk/OXW39ff53seVUx9GE
pU6V5yXRav5vZa93sdB40+JUWg6imhaTavq/iW4XENpHgpGxxgynIwMZbHoMkqCGqT4c+DZ9DtZd
V1n/AEnxRqHz3ty7hyoz8sSkDCqAFyF4yOCQFxe8G/D/AEbwNa+Xp1vunbdvvJwrTuCQdpYAfLwO
BgcZ65NdJSjFt80x0cPVqVFXxL1W0VtH/OXn9yCiiitT0wqG8s4NQtJ7W6gjubadGilhmQOkiMMM
rKeCCCQQamooHtqjxXx/+zHoerSSaz4Nlk8E+KokY21zpcjW8DOVC4ZE+4CoZcx7fvsSH6GLwn8Z
vEfhHxLpvg/4oaT9k1XUJ1ttL1rTkD2l9zsy+D8rM+08KMeau5IwMn2+ud8eeA9G+JPhq50PXLbz
7Sb5kdcCSCQA7ZI2x8rDJ9iCQQQSDyyo8r56Wj/B/wBdz1qeO9rFUcZ70e/2o+j/AEenodFRXz/4
e+LHiD4QeMLPwT8TJo7jSpk8vSfFu0qLgA4BuCSRnBVWPVCAWLK/mV9AVrTqKonbdbo5MRhZ4Zrm
1i9U1s15fqt0FFFFanGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR
QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcv4+8cxeB9OtpFtH1K/u5
lgtrGJwrysepHBOBwOAeWUd81zFt8K9Q8XYvvGmsXdxJLIlx/Y9pLstYCMjZ1OflIGVwfvfM2d1H
hG3Txt8TtY8VeZ5+naX/AMS3Tm+XBYL+8YFW5X5mIJByJR024Hp9YJe01lt0PEp0lmDlVra07tRj
0dtOZ979E9La9Tl9N+GPhTSoGhg0CxdGbeTcxee2cAfek3EDjpnH510NjYW2mWqW1nbxWlsmdkMC
BEXJycAcDkk/jU9FaqKjsj1adGlR/hwS9FYzdS8NaRrM6zahpVjfTKuwSXNukjBck4ywPGSfzo03
w1pGjTtNp+lWNjMy7DJbW6RsVyDjKgcZA/KtKinZXvYfsqfNz8qv3sFFFFM1CvO/idHL4X1XSPGt
qHYWDC01GNCf3lq7Y6bwCVZuB3ZlJ4WvRKoa5ott4i0e8028TfbXUZjfgErnowyCNwOCDjggGonH
mjZHJiqLr0XGPxbrya1X4/gX6K8z0pvH/gxINKXR7HxNpdrD5VvcW9wtrLtBwgfecZCgDAU9R8xI
OZP7c+Jt9qmyDw5pOl2bdHvrnztmF/iaN8nJHGE7j61PtPJ/ccyx6suanPm7crf42t87noN9f22m
Wr3N5cRWlsmN807hEXJwMk8DkgfjXljeJte+Lmo3lh4buX0Pw3bsFk1kIwnlcc7U5GATtOOCAMkj
dsOkvwv1PxRfR3fjTWv7TgXcw0eyDRWqNlthDAgthWPJAboCxA59BsbC20y1S2s7eK0tkzshgQIi
5OTgDgckn8am0qm+i/EzlDEY12muSn2v70vW3wr539Dm/CHwx8P+CtsljaedeD/l9uiJJv4uhxhe
GI+UDIxnNdXRRWsYqKskelRo06EFClFJeQUUUVRsFFFFABRRRQAUUUUAc7488B6N8SfDVzoeuW3n
2k3zI64EkEgB2yRtj5WGT7EEgggkHyf4SePJPhj4lX4R+L7nN3abV0PWJN6x38DnMcZ3n5WGSi4J
XKGMHKjf71XD/Fv4SaN8XvDTaZqa+Rdw7nstQjUGS1kI6j+8pwNyZwQB0IVhzVKbv7Sn8S/Fdj08
LiIcrw2Iv7N/+Sv+Zfquq80juKK+f18deP8A4BWki+O7WTxr4TjdY4fEWmsv2m3TDIizRNgsWKx5
Zm4MhzJISBXt/h7xDp3ivRbPV9Iu47/TrtPMhuIjww6EYPIIIIIOCCCCAQRV06qnps+xjiMJOglO
6lB7SW3/AAH5OzNGiiitjiCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA
ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArl/idrcvh7wFrV9Dv85YfKRo3KMj
SMIw4I6FS278O3Wuorhfjd/yS/Wv+2P/AKPjrOo7QbXY4sdJwwtWUd1GX5M3fAuh/wDCN+D9I04w
/Z5YbZPOj37sSkbpOcn+Mt0OPTit2iirS5VZHTTpxpQjTjslb7gooopmgUUUUAFFFFABRRRQAUUU
UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEN5ZwahaT2t1BHc206NFLDMgdJEYYZWU8EEEg
g14L8PdAn+Bfxun8J2ySN4N8WpJdaQhnMptriGMPKhBYbRt3DOGLAQfMSrY+gK4L4yfDBPid4V8i
1ljsPEVi4udJ1Q7le1mVlbh1IZQ20AkZx8rYJRa560HK04r3l/TXzPSwddQcqNV2hPR+T6S+T/C6
O9orjfhH46n+Ifgaz1W+tY9P1dXktdQsUY5triNyjoyn5kJwG2NyA45PU9lW0ZKUVJbM4qlOVGcq
c907BRRRVGQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU
UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR
RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB8/wDxa0M/B/4gaH8R9DeTTtGvNRjg8UW8JlNvIj5U
XLxRjBIDyck/6wxkKWZt30BXBfHrQ4PEHwb8YWty8iRx6dJdgxEA74R5yDkHgtGoPsTjHWtD4T+K
v+E2+GvhvWmuvttxdWUf2mfy/L3XCjZN8uABiRXHAxxxxiuWCUKsoLZ6/wCf6Hq15Sr4SnWlvFuL
flvH9V6JHW0UUV1HlBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA
FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU
UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXjf7L91/Z3hHXfCMl3b3M3hXW7vTEaMbJH
i8wssrpuONztKB2wmOSpNeyV438JdKtdG+OXxjt7OLyYXn025ZdxbMksMssjck9XdjjoM4GBxXPU
0qQfqvwv+h6WHtLDV4Pooy+6XL/7ceyUUUV0HmhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA
UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR
RRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXkGjwvof7U3iC
2triQ22ueGoNUu4XCkedFMLeMqcZACBuM8lyfTHr9eN+MLa60b9p74f6nb3m2HWtLvdKubbygcxw
K04O456u6dACPL6kMRXPW05X2a/HT9T0sF7zqQ7wl+HvfoeyUUUV0HmhRRRQAUUUUAFFFFABRRRQ
AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAB
RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFF
FFABXiH7SVtJourfDrxr9suLSy0DW0jvnt4nby7aZk8yR2TkLiLYVwd3m49j7fWH448KweOPB+s6
Dc+WseoWskAkliEoicj5JNpIyUbaw5HKjBHWsa0HUg4rc7cHWWHrxqS22fo9H+DNyivLP2c/Fz65
8P49Cv447XX/AAu/9i39ojKShh+RG4dsgquN3ALJJjgV6nV05qpFSXUyxFGWHqypS6P+n8woooqz
nCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA
KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo
oooAKKKKACiiigAooooAKKKKAPEPiJJJ8Hfi1afEFUuD4V1qBdO8RmFHlW3kXC29yyh/91MhSFCs
Bl5QD7fWT4s8L2PjTw1qWh6nH5llfwNBJhVLLkcOu4EBlOGU4OCoPavNvgL4lvdPk1v4ca9cRy61
4TdILaQKkZutPKr5Em1XPIXbu4+UPGGJYsa5l+6qcvSX59fv3+89WX+1YdVPt09H5x2T+Wz8rHr9
FFFdJ5QUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA
FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU
UUUAFFFRx3EczSrHIrtE2yRVYEo2A2D6HBB+hFAFfWNZ0/w/ps+o6rfW2m6fbjdNd3kyxRRjOMs7
EADJHU96swzR3MMc0MiyxSKHSRCCrKRkEEdQRXy/rnxk1XxT4P0rxHcaXawa94ZuWvb3SpkMkL20
8EyW+oQpu3SLGMuyghh5c4yCoJ9B+CfiO3Gv6h4Y0TxRp3jXwxZ2EN1bahpsdqgsZGZka1b7KqxY
O3eg2hgNwO7g19DXyerh8PKpN+9Hft9602aau1dPTVHlRx8J1VBbP+vzutL23ejTPYqK5D4k/Fbw
18J9IS/8RX/2fzt4trWJDJPcsq7iqKPwG5sKCy5YZFeW/wDCJ/Er48XXm+Kri5+HfgeeDH9gadcq
dQuN0WMyybOEbzGDI4H3Apjz89edRwcqkPa1JckO76+UVu36aLq0esemeNPjR4I+HsjQ694ksrO6
SRY3tI2M9whZd6loowzqCvO4gDkc8jPn/wDw2J4LvvEH9kaHpfiPxNcN/qW0nTg/n4Tc2xHdZDtG
c5UfdJ6c11PhP9m74c+ELMwweF7LUZGSNJbjVoxePIVBG7EmVQnJJ2BQeOOAB6NZ2dvp1nBaWkEd
rawIsUUEKBEjRRhVVRwAAAAB0xW3Pl9NWjCU35tRXrZJv8Q0PIl+NnjPXbyVfDXwh1+6tYUQyya9
cx6S+9i3CLIGDgBRyG4zyBwTL/wsr4rf9Ea/8um0/wDia9eorL6zQW2Hj83O/wCEl+QHz9pP7YGk
2GoRad478La14EvpsyJ9rgeWIQ4O1z8iyfMysvyxsMgc9ccP+0H8RfC+o3Xgz4l+CPEtlea/p919
mNosrrNLAC7DzIiyukYIkQjaN6z9cbc/U/iLw7pvi7Q7zR9Ys47/AE28Ty5reUcMOoORyCCAQwwQ
QCCCAa8Wh/Y18H2F5qE+l674o0aO+SSCW3sNQREMDnLQkmIs0fAGGLZwM5PNaVoZdjKMlaVKfT7U
f81953YPErC141bXXVd09Gj074W/Eax+Kngux8QWKfZ/O3Rz2jSK728qnDIxH4MMgEqynAziutr5
0j+B/iL4Fa1pmsfC43viKCdzDrOj6pfQxi4i4KMp2Iqlfn+bJYFlwCpcHc0/9qbS9J1a50nx/oOo
+A9Ti3Mi3CPdQyoGCgo6JubLB8EKUITIc5xXz8a3IuWto+/R/M662A9tJ1MD78Hrb7S8nG9/nroe
30VyX/C3PAv/AEOnh7/wawf/ABdbmh+ItJ8TWj3Wj6pZ6tbI5iaaxuEmRXABKllJGcEHHuK6VOMt
Ezy5UakFeUWl6GjRRRVGIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFF
FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU
UAFFFFABXjOteG7z4O+JtV+IcF3davZ6reZ8R2iqdsVrkJBcRRgn5rdAofH30LtjIUV7NVPVtYsN
A0+W/wBUvrbTbGHHmXV3KsUSZIUZZiAMkgc9yK7cLiJ0JOKV4y0a7rt+q80n0MK1FVopPdap9n3/
AB/Q8q8L/s36Jpup+Gteu9c1LXtZ0KVn028uGj8mG2YMBAkIXYF2sD5mPNLAHfjCi58S/jVYeCb7
/hE/C9muv+PrxgLTRLZDsR5NzmWdhhVUDMjAsGIIJ2qxccnq3xR8U/HLUJdD+Fn+heF+LbU/GdxG
0bQswDMtsjFWLqmVJxu3SL/qxtkPpnw6+EXh34ZxzyadDJe6tdSSSXWtaiyzX1yZGDMHlwCRkL8o
wMjJBYkn18RUmmqmYy5pLaHbW/vW+Fat8qs9elwo4enQvyKze/n/AEtPSy6HLfDb4JXdpq7+LPiL
fW3jDxs+xIbhow1tYRxtmMW6FFCvkby4VSCTjBLM/r1FFeHXxFTET56j+WyS7JdEbhRRRXOAUUUU
AFFFFABWd4h8Pad4r0W80jV7OO/067Ty5reUcMOoORyCCAQRgggEEEA1o0UmrqzKjJxalF2aPLLP
9l/4YWN3Bcx+Fo2khdZFWa7uJUJByAyNIVYeoYEHoRXK/GT9mPwnquk3us6F4ZvDrkaYh0rQruGy
iu5DtRA5kVo4kXGWZFzgudrtgH3HWNWttB0m91O9d47Oyge5neONpGWNFLMQigsxwDwoJPYGvFPj
b4m0L4sfs2f8Jh4X8XXcHh0S2OtR+IvD179nmhtYbqN55FY8BkiWXKSAgFSrrwRXNOhRcWnFW0vt
on1+5O3oehDMMZGakqsr62u3r5flfseb/Dv4RePbnX/FPgzxF8aPEg8Y6c9pqkc8V3K1tLYXEO3E
cO9WAS5iuIwxdjtRSwywx3XirXfjT8HftWq3Nxp/xE8MxbZrib7Itrc28S48w7I8bc7m+b96FEe4
hRkGl8A9c8T/ABa8X22t+OvClxpGoeHbU/8ACOeL7WKW2TxLp05dJJZYSpFusnl28v2WRvMVgr4A
Aqz8ePilc/ECa6+Evw1uYtU8WahJJZazN5Ja202z2bZzJKRtU/OqHaHI+dcCTYDv9T537j5X3V7a
d0/Le6ve6dma4fHVZz5KsVOK3ul8/eWq8mna1rXRv+Gv2tvAGreH7fUNVvpNAuZHaF7KeJp3DqiM
zDygx8vL4VmC7trccHE3/DR39uW2/wAJeA/FXiTzp/Is7z7F9nsLjEmwv9oJOxeGOWUYxhtvJF/4
U/s3+Dvhdpdmq2EWua3GI5JdY1JPNlaZCWEkSsWEOC3ATBwq7ixG6vVax5K2zmvkv6/IKtXARk3R
pN+stPwV/wAT5/X9orxN8ObST/havgm802SR1+yXmhRpNbOGDfu3ZpiqyDYxwHJIP3RjLeh+APjn
4L+JUkdto2sxnUXRXOn3SmGcEqWKqrcSFQrbvLLAYznBBPb3lnBqFpPa3UEdzbTo0UsMyB0kRhhl
ZTwQQSCDXk3iH9lH4ba9HeeXosmk3Ny/mfadPupEMZLbiEjYtGoPIxswAeAOMRy14P3WpLz3+9Fq
rgK6ftYOnLvHWP3N3+5nr9FeKt8Nvij4L1SNvCHjuPXdIZ2kksPGReZ1JRVA89FLsM5bCmMLgcNl
sxN+0Rqvgb7JD8S/BGo+GvO8mMapYOl5Zs7bg5Yqf3eNhYRgyPtzwcAtft1H+Imvy+8x+oSqf7vN
T8k7P/wF2f3XPb6K5jwd8TvCvxAjVvD+u2epSMjS/Z0k2zqittLNE2HUZxyVHUeorp63jJSV4u55
86c6cuWaafmFFFFUZhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA
FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFZviTxFp3hHQNQ1vV7lbPTNPge5ubhlLbI1BLHCgknA
6AEnoATWN8P/AIhQfEGzvZo9C8QaBJazeU1v4g0uWyd1I3JIhYbXVlIbCksmdsio4ZAb3sGx1dFF
FABRRXmfxU+Pvh34YyRacBJr/ia4k8i30LTCslwZCoMYkAOYwxZAOCx3gqrYON6NCpiJqnSjdgej
Xl5b6dZz3d3PHa2sCNLLPM4RI0UZZmY8AAAkk9MV4teftHXHjK8n074UeHJPHN1DatNcX00hsrW0
djtiVvNCmQkgkqCuQPlJ+bZkeHfg/wCJvjXJZ+Jfi3dyRafIm+38F2Zlt7eHC4jllw+4SfPIxX74
3KCwAMY908O+HdN8I6HZ6Po9nHYabZp5cNvEOFHUnJ5JJJJY5JJJJJJNejKOFwekv3k+32F81rL5
WXmxnlH/ABkBqekf8yFpNxcQf9PbT2zMv/A4y6k/7S5H8Q6w+GP2d7jX7y2134r61J4216GRmisf
MK6ZbcptKRBUDEiMbgVCNuIZGI3H2+isv7QqxTVKKhfrFWfpfewXIbOzt9Os4LS0gjtbWBFiighQ
IkaKMKqqOAAAAAOmKmoorzd9WIKKKKQBRRRQAUUUUAFFFFABRVDXtcsvDOiX+r6lP9m0+xge5uJt
jPsjRSzNhQScAHgAmvIrWy/sv4g+BPGd74kfxKNe+06cl/A5hsIo54lmt0ggDsqq32fG4lndnGXx
tUd+HwrrxlJuySdtG7tJu3bp3vromc1at7Kytf57K6Tfyv8A52PXfEGh2XijQtR0bUo2m0/ULaS0
uY45XiZ4pFKuA6EMpIJ5UgjsRXEaX8Hk8IfEM+I/COqf8I/pmoDGueHfs3m2V86ptS4iUOv2e5GF
VpF3LIgw6MwR09Gr52+NHibVfjdr8/wm8AXssCxSD/hKvEEJzbWVv8wNpkcvI56orL9woTjzfL5K
cOaV1p3fl/X4nbGDqe69vyIfiP4k8U/H7xZdfD/wZb3Vh4IsNQ/s7xX4k3i3aTaT51pAWBJwAVYh
W3MyhtsRzJ7D8NfhX4a+E2gRaV4c02K0URqk92yKbm7K7iHmkABc5ZiOy7iFCjAqf4cfDjQvhT4T
tfD3h61+z2UPzPI5DS3EhA3SytgbnOBzwAAAAFAA6ernUuuSHw/n6lzqXXJD4fz82FFFFYGAUUUU
AFQ3lnBqFpPa3UEdzbTo0UsMyB0kRhhlZTwQQSCDU1FA9tUeTeOP2X/h/wCNvKf+yv7AuI8DztDC
W25Ru+UptMZyWzu27vlAzgYrD0P9nXxN4Hu3Twh8UtV0jSFQxwaffWSXqRAkM5Cs4jyXycrGpG4j
JySfdaK53h6TfNaz8tPyPSjmWLjD2bnePZpSX4pnhVr4k+OHgONk1rwzpXj6zhtXma80i6FtOX3E
7SpUbyFBAWOHnK4JOQdHwX+1R4O8Sag2l6ubjwhrEX7ua31pRFGsoDeYglzgbSpH7wISSABk4Hsl
cx4x+GXhX4gRsviDQbPUpGRYvtDx7Z1RW3BVlXDqM54DDqfU1Hs6sP4cr+T/AM9/zNFicLWusRSt
5w0/B6fdY6GzvINQtILq1mjubadFlimhcOkiMMqysOCCCCCKmr5pm+EPxN+DOtW9z8NdWk8S+HVQ
wroOsXYxFv3M7FCY48bwGDIUbL4II3Fu9+HPx9sfEGrP4X8VW3/CJ+NrTZDc2N4ypDcSltoFu5Y7
t2UYL1IcbS4BanGvry1Fyv8AD5MVbAPldXDTVSPl8S9Y7r12PWaKKK6jyQooooAKKKKACiiigAoo
ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuY1/wCJPhzwv4y8M+Fd
U1KKz1vxILn+yraTj7SYFV5VU/3grg474NdPXAfEz4LeHviZb3013HJZ6/JaR21lrcDk3GnvFL58
MsAJ2q6TBXyB82xQ2QAKV7NPp17/ACHv/X5nzl+0N8RT4R8bfEWx8eeJJoPhX4kS28KrbwqZrvTL
+SyEsNzaQLl5izsVeNFY7hE2NquRN8KvAHi2Px74PvtS8Ha9pnxOs9RluvFXjwSKuma3psolxES0
3mSIdsPlWrR7rVox8sSkNJ7P8P8A4R6d4ks73xP8RPAOhx/EbWNPOh6/eeWlzHfW8ZaPMRLNsgmU
CTyzhsMquCUFZXxK/aAs/D92ngHwBbS+IvGkm/TYobRvk0+QRYV2d1ZXKHBKnIGx97Lt568Jhata
py0tWtb9Ert6t7Lve10+VrREy99WtbT9LX7enZrmT1d+5+IHxu8F/DSG5/trXLYX0HB0y1cTXZYo
XVfKU5XcMYZ9q/MuWGRXml54y+NfxVvJ08IaDH8OtHt5GC33iOPF1cFTwvltG20Mro3EZAKMPNPS
u0+D/wABdF+GsK6pdx/2z4wuttxfaxeuLiVZ2TEvkuyhlQs0hzjcwb5icAD1Ku51sLhZWoQ53/NL
b5R/zv6FHhX/AAz/AOMPF3z+OfiprV7DPY/ZrjTtCRbCAs33lbHySphnXLRBmBXOANtegeC/gv4I
+HsizaD4bsrO6SRpEu5FM9whZdjBZZCzqCvG0EDk8cnPa0VzVcdiKseRytHsrRX3KyAKKKK4BBRR
RQAUUUUAFFFFABRRWR4q8XaP4J0g6prt/FpunieG28+YnHmSyrFEvHdndVH1oA16K888dfGKz8D/
ABJ8C+EprCS5bxNPNC98r4jsdsbNFvGDnzXXy15HOeTjB4zxF8brzwz+0Np2m6nqVlp3w7nR/D7T
XTJF/wAT0xJdxgyN/CbclAM4LtjBOMEfetbZ3/D/AINl6tA/dvfda/L/AIa79Ez3akY7VJ9PQZpa
KAPE4de8U6/4R8R+CfF9nDb+KNY0m8m0blAt5E8bfuW5CCeEuiuAcEFXBxu21/Bvw11rRZdTu/GE
mnWHgS5U6qvhuOdVh0G5SVJ/NM20FvmQyEq6pG5YKHU7x6V8RdU8I+H9HttY8Y3VlY2WnXK3dtcX
kmxkuEVmHlY+ZpCof5FyWG4YIJFeAWOqeKf2wta0vz9DuvD3wYguJZLrzLsRz6y8THy1baN2zdsy
q/KCsv70uqbfolj5ezl7KKgnq9NE/wC5ro9E+6d7NRbRxwy72rUq0m4x69+6ffqrdU9VdJnQeJvi
f4y+N+v3vhb4TmKy8LwyfYNX8dMcrC5+ZxZ4YbyqgruXJJkUgxrtlb2L4cfDjQvhT4TtfD3h61+z
2UPzPI5DS3EhA3SytgbnOBzwAAAAFAA0/DPhnS/BugWWiaJYxadpdlH5UFtCPlUdScnkkkkliSSS
SSSSa1K8OdS65Yqy/rc9KdS65Yqy/rcKKKKxMQooooAKKKKACiiigAooooAKKKKACuN+KHwn8P8A
xc0WLTtdhkDQP5lveWrBJ4DxuCMQRhgMEEEHg4yFI7KiplFTXLJXRrTqTozVSm7NdT56i+JPjH9n
/ULHS/iM/wDwkvhe8nEFp4ptQfMtlAKhJ025diFVzklsGQhpSMD3rSNWtde0my1Oxl8+yvIEuYJd
pXfG6hlbBAIyCOCM1LeWcGoWk9rdQR3NtOjRSwzIHSRGGGVlPBBBIINeF/6f+zDq3/LxqXwnvp/9
qWbQJXb8WaBmPuQT/f8A9dze9Q3d4/iv+B+R6j9nmC9yPLV7LaXoukvLZ9Nd/eqgtb62vWnFvcRT
mCQwyiJw3luACVbHRsEHB55FZVr4ttdb8JL4g8Po3iK2mgM1rFZOivcf7AMjKqtkEEOV2kEHBGK8
dm0jTfDFxe+PdT1vwTpfj2S7XT7nUtTKvZaErK0htECvGWlKuSzu8bOZS3C7Y69vCYWOKi25W7W1
u35LW3n9yb0PncTVlh2ly663vpZLf59l+Su179RXP+AfFX/CbeENN1vyEg+1oW2xOZI2wxXfG5VS
8bY3I2BuVlOOa6CuOpTlSnKnNWadn6o2pzjUgpx2eoUUUVmWFFFFABRRRQAUUUUAFFFFABRRRQAU
UUUAcJa/Gjw1cfFG9+H7y3Nt4it9nlpLCTFc7oPPOx1zjanXft54Ga7uvM/jV8FbH4paV9ss/L0z
xlYop0rWg0iPbusiyAEoQSMggEhtm9mUZyDyHhn9rHRtPk1DR/iPZyeCfE2myLDPb+VLcRTnaCXj
MasVBOSAcjayFXfJI9f6msVSVTBxbkl70d3fuurT/B76WH6Hvdef/FT46eE/g/HEuu3kkmoTJ5sO
m2cfmXEibgpbBIVRyeXZc7GxkgiuK1b4/X/xIml0H4P2P9u3zQA3PiC7Vre00ve4RWKyoDI+N7bc
fwghZMMo6P4Xfs8eGvhpqH9tM9zr/iqTe8+t6k5eUu4Hmsi5wu47jk7nw7AuQaI4Wnhlz466fSC+
J+v8q9Vd9F1D1OQ1PxP8bvibMD4T0K2+HmijdJFfeINrXc+12Ta8RRzFuBVtpj42EiQggHY1b4c/
GWHT5X0v4uW15fDHlw3fh+2t4m5GcuocjjJ4U5IA4zke00VLzBxsqdKCS/up/e5Xf5AeQ/A/4ya1
481fxB4a8XaLbeH/ABVoewz28UxHnqzPl0iJJCKPK+YO6t5ikEBhXr1eCfHK18RfD74heGvH/gjw
pJrd5Mk2n67HZQNI93B+6aJXCgspGx8SheNiKxK7VPR+Av2mPB3jzxFdaCTe+HNYgkEIs9ejS2eW
TfsMSfO37wNgbDhjngHDY2xOEdeKxeGh7jV2lrytaPTVpX1XkwPWKKK4T4gfG7wX8NIbn+2tcthf
QcHTLVxNdlihdV8pTldwxhn2r8y5YZFeTSpVK0uSlFt+Qju6wvGnjnQvh5obav4i1GPTNPWRYhJI
GYs7dFVVBZjwTgA8AnoCa8h/4XB8UfiBJZXfw/8Ah/HZ+H5pFUap4qcRGVHWNhKIlkVhGNzHcnmb
hjGCCtXPDH7NKaheW2sfErxBe+PdYjkaeO0upWGn2sjlHYRxZ5G5CMfKjKQDGMCvSWCp0Pexk0v7
sWnL07L5/cM5a1uPHP7UWoXtvK+pfD74dw7JYtttJHd6xBKMbTISEZDGJCduVXzEBWXhh6Z8Nf2d
fBHwsvLe/wBJ06S51iFHjGp38xlmw5OSBwinB27lUHbkZOWz6ZRUVswqzj7Kj7lP+Vfq93fzAKKK
K8sQUUUUAFFFFABRRRQAUUV5T4gt9T8IfFzTvED30mpxa7b3Gjw6fjyoopEj+0WyLk43MYrkF2Iy
ZFHAUCurD0PrEpR5rNJtedle33GVWp7NJ2vql6Xe/wAjvdJ8YaNrn9sfYdQiuP7Huns78jIEEyIr
spJHZXU5HHPsayfhX8RIvid4TTWksJtKf7TNbyWdwcyRlJCFLcDG5Nj4xwHHXrXjnhH4e+O477Wd
CurCy8MWPirQvNu7tA+oH7cpKzST7PLSOWUTrlFkcERNtc7c16d8O/hjqPgXxh4m1G41+71yz1ZY
J1a8dEkW4CeXKTFDHHEBsjgCsBu4YH1PsYrB4PD06kVUTlo4638mtPd1bfW65fM86liK9WUHyNK7
T0tput9brTpZtvax6JXB/Gb4Q6L8ZvBN/oer2yzytbXC2MsrPttbiSF40nCggF03kqxGVPKkHmus
1PxBpmjbhfX9vbOqeZ5ckgDleeQvU9D0HOK5y++Lnhy1iDxXE14xbHlwQsCPf59ox+PevlqlSmk4
ylb56/LzPfpUa0mpQg38tDwbxF8B/G/x78DJ4nvPFeqeFPEN9pWkyx+HHtFsfK1CyczbLq62POsf
2guytbCFwHY5kBQL6hefss/Dq81q318aIIPFUOpw6qPETSfadREiMpeJZ5w7JBIAyvEm1WEkhADM
Wrch+KF1r1w9v4e0G4vn2f62dwixuQcbsZGOO7DPIq7c6D4u1pZEu9ctdJiKqAumRMxbBJJLMQyn
p0PP8z6ypSc6Ubu99NNdHu/Rfcing5QSjWko6W1d9LW2V+n33Z0uqa3YaLF5l/eQ2qlWZRI4BbHX
aOrHpwPUVxtx8RdT1q4EPhbRpL6MOUN5coViJAJIHIA42kFmB5xt6VpWPwu0G1lM1xDNqVwZfNM1
5KWJPXkDAYZ55Bzk5rrqjlq1N3yry1Zalh6XwrnfnovuW/3nyf4J+Gt38Wf2jvHY+J89r4jTwgln
HYadGH+yjzx50T4yoJCR4dGUq5kOeFGfrCvC/gC9z4i+LHxu8VtFFbWdxrsOhxwLKXk32ERieQ/K
AA4dGABJBLA9AT7pXtY6Kp1VTWiUY6efKm/xucKqzqq8n3+4KKKK88AooooAKKKKACiiigAooooA
KKKKACiiigAooooAKhvLODULSe1uoI7m2nRopYZkDpIjDDKyngggkEGpqKB7ao+f4bOf9lnWriSG
CS9+FerXQlmdEMk+iXD7UDMR80kJwq5OSMAfex5vYR/DGx8W3UGuaX4q1i38MavcQa7Lo9ssKQXc
wMMkcm94vPjVvKUsgcZJ/h5B9KvLODULSe1uoI7m2nRopYZkDpIjDDKyngggkEGvELO11L9m/wAQ
QW0bSah8K9TuljVppcv4fmkfALOx/wCPdmbkseM5J3f66KFerl8r0naL8r2+/wA9nunt5ejWp082
hap/FXnbm0t/4FbT+8tN9/daKKKs80KKKKACiiigAooooAKKKKACiiigAooooAKKKKACsLXvAfhn
xReJd614d0nV7pEESz39jFO6oCSFDMpIGSTj3NbtFXGcoO8XZgU9J0ew0DT4rDS7G202xhz5draQ
rFEmSWOFUADJJPHcmrlFFS25O7AKKKKQBXFfEb4O+E/ipZmPxBpUc10qbItQh/d3UPDbdsg5IBdm
CNlM8lTXa0VrTqzoyU6cmmuqA+ebr9lHV3kXT7b4r+KIvCexLY6PLK7k2wUK8O8SKmCNwH7rABAK
tjnrvhz+zF4D+Gt4L600+TV9SSTfFe6uyzvDgqV2KFVFKsgIcLvGT82OK9YorvqZnjKkPZyqaeVl
f1ta/wAx3CiiivLEFFFFABRRRQAUUUUAFFFFABRRWD4k8VJocttZ29u2o6rdMBDZRttJHdmP8KjB
5PoewJEykoK8i4QlUlyxWpvVzOteKvChht5L+90+8WKZZYgNtwY5FyVcBQxUjnDdvWsVfBWseL7i
C88T3nkQq+f7Its+XhQQCWDHBJJyeTg4yOg6XTPBWhaPtNrpdurq/mLJIvmOrDGCGbJHQdDWMala
TvBW9d/u/wCCdUqeHpq05cz8tvvf+VjEHxCutc81PDei3GpbN6m6nIhhDDGCCT83UHaSpx+kVx4b
8W+JPLlv9aj0Pag2wabvPJ5bedw5HA4JHXHv3dFL2Ll/Ek3+C/z/ABD6wqf8KCXm9X+On4HL6P8A
DXw/o6jFit5LtKmS8/ek5Ofun5Qe2QB/OulhhS3iSKJFjiRQqogwFA4AA7Cn0VtGEYK0VY56lWpV
d5ybCsDxr470T4d6TFqniG+XTdNe5itTdSA+XG8jbVLkfdXJGWPA6kgVueYnmeXvXzMbtueceuPS
vA/HPxS/4QPxjrbfEWG11DwRbanF/Zd1DGfOs53tAY45Ygf3yOTMFbna6ncNu1k9bL8G8ZV5Er21
stJS1StHdX10/BN6Pz8VXWHpuT06X6LRu78l1/yu177HIk0ayRsrowDKynIIPQg1zHxQ8f2Xwt+H
+ueKr9PNg023Miw5YedKSFijyFbbvkZF3YIG7J4BqHwH4Hk8Ctd2mn6mZfC0mJNP0maEl9PJ5aOO
Xd/qf7sZXKZIDbcKvhfj/Wpf2oPjEnw10ea6t/A/ha4Nx4rnZZEi1GWOVQLMFQGGGVwCXUEh3UN5
KFroYWnUrv3r0o6ye2nb/F00vrs2tRqpL2aclaT+fzXl1PRP2UPhrL8L/gjodhe2n2PV77dqV/GT
IGEsuCqurgFHWIRIygABkPXkn1+iiuDEVpYirKtPeTudEYqMVFdAooorAoKKKKACiiigAooooAKK
KKACiiigAooooAKKKKACiiigArO8Q+HtO8V6LeaRq9nHf6ddp5c1vKOGHUHI5BBAIIwQQCCCAa0a
KTV1ZlRk4tSi7NHivwfvNc+HPjC++G3iOaS401Ua48LahcOrGe1Q/NbmT5d0kalDsC5UB/4BHXtV
eefGT4d3XjLSbXVtDu7jTvGGg+ZdaPc27gbpCo3QurEKVkCqp3cDvldytn/AH4sP8RPCq2etzRwe
MtNeS21GxkVYZyY2A83yc7gPmRWO1QH3AADArlpy9lL2T+X+Xy/I9XEQ+tUvrkLX2kl3/m9H187n
qdFFFdZ5AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVj
+JvE1v4Zs1kkVri6mby7a0j5kmfsAPTkZPv3JAPL2mg+K/FXk3uq6vJokJ2stlYhkcKfvBjngkAE
ZLY3HgdKwlV5ZcsVdnVToc0faTlyx8+voj0CiuPuPAN4nlvY+KdYhmRw2bqbz0IHYr8uecdcjrxR
4c8X3i6yPD2u23kaqqZjuI+Y7oDJ3DjjIGfTIYfKflo9rZpTVrj9gpRcqUua2/R+p2FFFFbnIFMm
mS3ieWV1jiRSzO5wFA5JJ7CmXd1FY2s1zO2yGFGkdsE4UDJOB7CvP/8AiY/FeP8A5aaP4cR/96W7
Ib8gAB7gN/ex8uNSpy+6ldvodNGj7T3pO0Vu/wCt2Wz4h1Hx9cSWvh+aTTNMi3LcapJHlnbBASMZ
9CDngjI+7wG2/CvgfTPCPnNZrJLNLw085DOF/ujAGBnn379BjY0/T7fSrOG0tIVgt4l2pGvQf4n3
71YqYUtVOesv62KqV9HTpaQ/P17/AKBRRRXQcgUUUUAFFFFAHnnjv4VXHifxTB4q0vW5tG8RadZf
ZdNmjUmJSZN8izoGAmifCKUIGNpZSGwRc8N+FrbxFdx+J/EnhWPTPFbWjabcRzXC3UXlZO7y8MVK
Pk/MVVypAYDpXb184eKPFGq/tReIL7wX4LvpdN+G9jJ5HiPxXbEbtQOPmsrNuhBB+Z+QQe6FVn9r
D1a+Ih7NytCC+L+WPVabpv7Ot3ta7OOdGnGp7S2r6d2rWfqrb/f0MzxF8TPE/wAbvFD+APgneWuh
+FdGMdprXiu28oJBG6SKsdomQdgEbhXjAJdV2tGg3v7z8NfhroPwm8I2nh3w7afZrGD5nkchpbiU
gBpZWwNztgc8AAAABQAL3g/wToPw/wBFi0jw5pNro+nx4Pk2sYXewVV3ueruQqguxLHAyTW3XPis
Uqi9jRXLBfe33k+r7dF0NqdPl1e/5egUUUV5psFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAB
RRRQAUUUUAFFFFABXjfxr+Gt1DqEHxI8GWn/ABXOjYkMEcIkXUocbHjdMglhGzAMvzkDaMnYV9ko
rOpTVSPKzpw+InhqiqQ+a6NdU/JnO+A/HmjfEjw1ba5odz59pN8ro2BJBIAN0ci5+VhkexBBBIIJ
6KvCvix4e1L4Q61N8TPBNnJMsjj/AISTRIhiC7h+Ym5wOUkU9WUH7xcjHm7/AGTw94h07xXotnq+
kXcd/p12nmQ3ER4YdCMHkEEEEHBBBBAIIqKdRtuE/iX4+ZtiKEYxVejrCX3p9n+j6rXulo0UUVuc
AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFY/ibxNb+GbNZJFa4upm8u
2tI+ZJn7AD05GT79yQDoahqFvpdnNd3cqwW8S7nkboP8T7d64f4d6fP4iuJPFWrfvbyRylmASFij
AZTtAboSWGCM/LnknNYVJu6pw3f4Lv8A5HXRpxcXVqfCvxfb/PyNXw54UnN+Nd11/P1tuURGIjtU
II8tQDg8Mc5zz75Y9XRRWkIKCsjGpUlVlzS/4byQVz/jbw5/wkOjOIBt1K3/AH1nMpw6SDBwDkYz
jHXA4PYV0FFOUVOLi+oqdSVOSnHdHP8Ag/xhZ+KtNhdJoxfBP39t0ZWGAxC5J25Iwfcd8itq6u4L
G3ae5mjt4VxuklYKoycDJPua4/U/hFoGo3TToLiy3cmO1cBM5JyAynHXoMDgcU+x+Efhy1iKS281
4xbPmTzMCPb5Nox+HeuaLrpcrivW/wDwDsnHCN80ZNLtb9blLUrpvihcLp2nNJFoELq93f4ZDMwG
REgPXqCcjg4OOBu72GFLeJIokWOJFCqiDAUDgADsKIYUt4kiiRY4kUKqIMBQOAAOwp9bQhytyk7t
nPVq86UIq0Vt/m/MKKKK1OcKKKKACiiigAriPir8ZPCnwZ0WPUfE+o/ZfP3ra2kKGS4unVdxWNB+
A3MQgLKGYbhUPxh+MOlfB/w/DdXUMuqazfyfZtJ0Ozy1zqNwSAEQAEgZZdzYONwADMyq3EfBP4Pe
J4fGeq/Ef4nzWGo+M76OOLTra23PHotuVJeGMk7VPzlDt3YCsfMfzXJ9Khh4Kn9YxGkOi6yfZeS6
v5LUylJ35Y7/AJHITL8W/wBpvU9R065tbr4XfDD7QbW5gu7ZoNY1K2KqWXDqdudoBI2oBMynz9jC
vo7wv4X0rwV4fsdD0Oxi03SrGPyoLaEHaozkkk8kkkksSSxJJJJJrVorPEYp1kqcYqMFsl+b6t+b
HGHLq3dhRRRXCaBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF
FAEN5ZwahaT2t1BHc206NFLDMgdJEYYZWU8EEEgg14h8MYbz4N/FW9+Ht1cSTeGNaSXUfDeRIUti
rM0tqCwPIXLHL4+VWwGlIr3WvJv2ifDt+3hqw8ZaGdviDwhOdTgy7KstvgfaImw6/KUUM3UkIVH3
zXNWVkqi3j+XX+u56eBmpSeGm/dnp6S+y/v0fk2es0VneHdcg8TeH9L1i1SSO21C1iu4kmADqkiB
1DAEjOCM4JrRroTuro86UXFuL3QUUUUyQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAC
iiigDM8QeH7fxJZpaXbzLbiVZHjhfaJcfwt6r+XQc8Vp0UUuVXuU5NpRb0QUUUUyQooooAKKKKAC
iiigAooooAKKKKACqOua1ZeG9F1DV9Rm+z6fYW8l1czbWby4kUs7YUEnABOACavV87/tOar/AMLA
8XeCvgraXX2Z/E1wt/rEgO1k0+AtJsQmJhvcwuVIPDQAMNr12YSh9YqqD0W7fZLVv7iJy5Y3KPwh
8Ka98cPiQfi341ttnhq13jwbod7CVaCIuCl60YYqrlVBDHcWYh12rHCT9LVBY2Ntpdjb2dnbxWln
bxrDDbwIEjiRQAqqo4AAAAA4AFT0YrEPEzva0Vol2X9avuxQjyLzCiiiuM0CiiigAooooAKKKKAC
iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqG8s4NQtJ7W6gjubadGilhm
QOkiMMMrKeCCCQQamooHtqjxv9lG5uofhZJoV9Z/Y73w7ql3pU6+aJN0gfzWPHAwZSvBIO3OecD2
SvEPg7p9j4b+PHxh0uC5zNcT2WoLFNIvmN5iSSylQAMqrzgdOAygnJyfb65sP/DSfTT7nY9LMrPF
SmvtWl/4ElL9QooorpPMCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo
ooAKKKKACiiigAooooAKKKKACiiigAr5w/Z80aP4rfE7xd8ZtQnlvImvJ9F8NRyWzpAlhHtUXMPm
5YF/mU7doDNcAjLkL7b8RvEVz4P+HvijXrNIpbzS9Lur6FJwTGzxQs6hgCCRlRnBBx3FcR+yl4du
fC/7PPgizuniklls2vgYSSuy4ledAcgchJVB7ZBwSOT6lFujhKtRbyaj8tW/yRjL3ppdtT1miiiv
LNgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK
ACiiigDxvVtQ/sb9rDRPtFtceTrHheTT7a4WP92ZY53ncFjjoic4yQXTIwc17JXjfxpubrQfin8I
ddSz+1WUeqXGlSt5oTZJdokSHuTgCRuBj5MEjINeyVz0tJTj5/mkeli/ep0Ki6xt81Jr8rBRRRXQ
eaFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ
AUUUUAFFFFAHmn7Svh228UfATx1Z3TyxxRaXLfAwkBt9uPPQHIPBeJQe+CcEHkXvgFfW2ofA/wAA
y2txFcxLoVnCXhcOodIVR1JHdXVlI6gqQeRXe184fsa31tokPxJ+H1vcX91F4U8S3ENs944dVtXd
kjVSMYO+CZ2AVVzJkcscerTvVwNSP8klL7/df6GL0qJ9z6PoooryjYKKKKACiiigAooooAKKKKAC
iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA8g/ak0vUrj4YrrOkSy
Raj4c1G31mHyoPOJMZKk4PACCQyEkEYjORjJHofgnxjp3xA8K6f4g0lpGsL5C6ecmx1IYqysPVWV
lOCRxwSMGtyvl7xBdal+yL4qtJdNWTU/hnrV1JJLp3lZmspiqBgsxHJ2qCgZvmVXBAI8yuOpL2M/
av4Xv5dn/me1h4LHUVhY/wASLbj5prWPrpdX80fUNFQ2d5BqFpBdWs0dzbTossU0Lh0kRhlWVhwQ
QQQRU1dh422jCiiigQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA
BRRRQAUUVV1LU7PRdPub/ULuCwsbaNpZ7q5kWOKJAMlmZiAoA6k0AWqK5L4o/FPw38HPBd34q8U3
62Gj27xRtJwWd5HVERRn5iWYcD3PausBDAEcigBaKKKACvn79jqa28QeH/H3i+30yWyi8SeLb6+t
ri6txHNPakqYwWGdwR2mXglQ3mAHOam+OHxcvfElw3wx+F97/aHjzU90d1f6fOvlaHbpIFnknlAb
y34ZNo+dS2Rh/LV/Uvhf4Asvhb8P9D8K2D+bBptuI2mww86UktLJgs23fIzttyQN2BwBXrcrw2Dk
p6SqNWXXlV9X6u1vRmF+eorbI6miiivJNwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA
CiiigAooooAKKKKACiiigAooooAKKKKACiiigAr56/be/wCSUaT/ANhuL/0RPX0LXiH7WGg/8JV4
T8H6L5/2X+0vFFnZ+fs3+X5kcybtuRnG7OMjOOtcuKTdGSR62UyUMdSlLZM9T8C6HP4Z8E+HtHun
jkudP063tJXhJKM8cSoxUkA4yDjIFblFFdKXKrI8yUnOTk92FFFFMgKKKKACiiigAooooAKKKKAC
iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAyfFlzrNp4b1GXw9ZW2o64ISLK2vZzBA0p4
XzHCsVQE5YhScA4BOBXx54m8YX/ib4Kw/Cb4jX+seINVn8T3/hzxRqegaReXtxLawI14siwWiSyo
sqSWSY7JK/zcZr7ZrznXp/B/wP1DxV491zXJNJtdfmtFu45sPEbiOPykaKNEMjSNGqhvvfLCDhQr
GhUnWbppX5tLed1+l1brdXvYfNyWktGuvyf62d+lvM85+Cdtpv7Tn7N+gjxl4auV1Oy0+50GSfWr
YK/2pYWsrq5ijLl4ySJk/eBJVBdSq7jn074C32tX3wb8I/8ACSWlzZ+IbbT47LUY7uB4Xa4hHlSO
FcbtrshdT/ErKRwa8quP22vg34StL06Mt5deZfs7waTpfkm4eRRJJdfvPLUguSrFiHLAnaVwxyNE
+PXxk+Ot9cn4a+DrDw74Vljkih8Q+JA5OcyqsyEHax+QLsRJgjj5yVNe3/ZmLlzVaseROzblorq/
+b2WvbociqU4qMIu9r2t2f8Awy3Pqqvnf4p/tSWV7qdj4F+Fd9a+I/HGsXC2cV9bq09lpysoJuGd
VZZdqsW+Xcq7HL/c2NlePP2UPiB8TIXg8R/HC/vrOSNYpLKPRhb20gV96l4Yp1RiGwdxUnheeBj0
v4Lfs4+D/gT9vl0CO6vNQvflk1HUnSS4EQwfKUqihUyNxAGScZJ2rtqnDAYaPtZ1PaT6RSajfzbS
uvJIbdSbslZF74H/AAP0H4F+EV0jSF+030+2TUNUkQLLeSgHk9dqLkhUBIUE8lizN6JRRXj1as68
3UqO8nuzeMVFWQUUUVkUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR
XL658RtF8P8AjPQPC93LJ/a2teYbdY1yqBFLZkOfl3bWC/3ipA6GtadKdZ8tNXdm/kld/ciJzjTX
NN2X+eh1FFeK6h498VPqv9ga1qmieHJ9f0+6itI1UxXOj3TnZZpJOZ2jnkk/eFVRULGJiu5VYjn/
AADZ3nhPx14Nl07wdB4Ns75ZdE1q3guLZ11K7WCSbzwIHfeYmtnUyS7ZD55BA5r2I5VL2cpyqJNJ
tba2Tvu12aXKpd9ItM8+eOUZJRi3rZ+W3r3vrbZrfQ+iqKKgvL+20+MSXVxFbRk7Q8zhAT6ZPfg/
lXhpNuyPRlJRV5OyJ6K5K78cXF5cSW2gaXLqrKWjN3nbbhwoPDdCPxXPGCcg0yPTvGN8ss8urWmn
OyBo7WGBZFDY5VmYEjnHILdTjtXT9XklebUfX/JXZ5bzKnJuNCEqlusVp97aT+TZ2FFcQ3i3WPC9
xBF4jtIns5CsY1C0zjO3ksvc+2F6NgGuwsb6DUrSK6tZVmglG5HXof8AA+3aoqUZ00m9U+q2N8Pj
aOJk4R0mt4tWa+XbzWnmT15N+0F/zTX/ALHXTf8A2pXrNeN/tD6taw6t8LdMeXF7ceL7G5ii2n5o
42Ku2cYGDLHwTk7uOhxwYj+Gz6DL03iY28/yZ7JRRRXQecFFFFABRRRQAUUUUAFFFFABRRRQAUUU
UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeafGzxH8TdBsdKX4aeFLDxJeTSSG8l1G5SOO3RQNq
hGljLFyxO4NhRGQQdwI9LorajUVKam4qVuj2/BomS5la9j5O1T4MftMeLPsllrPxW0ux08XCSSz6
O721wi8hiDDbxF8BidjOFJAyRgEbfgv9hPwfo2tWeu+J9Y1TxprUdw91dfbii2l5KWZg0kRDO3JB
IaQhyDuypK19LUV6cs2xXLyU2oL+6lH8tTL2EL3evqQWNjbaXY29nZ28VpZ28aww28CBI4kUAKqq
OAAAAAOABU9FFePvqzcKKKKQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR
QAUUUUAU7rWLCyv7OxuL62gvbwOba2llVZJ9gy+xScttBBOOgPNeNv8AtLf8JDp2oR+FvCGtXGoX
mh6hq3hS7v1thZeITbKuFh8udpUDNJER50cRZWJHSo/2ivhysEtr8W9NW/v/ABZ4L8m+s7WN9y/Y
o3c38EUfd57eSRT1JaKHGNvOP8RPD3ijx742s5vDvgzVtGv1v9Pn034g2PiKNLBdNWSKe4SW385Z
syjzY2txbyRSsIHeQbQ0U8rn7t7XuvS+zv8A8Ns99GVdQd7XW/rbdf8ADX3XUxPgz+0Euo/Erwno
dr8RpfilovibTnN3eyW9mjaFqqxGeOzY2sUYj8yKK7PkzBpUNuMt82D7t8TvBR8VeF9Q/syG3i8R
R+Td2F06AH7Tbv5tuGbg7d+R14Ej+prDj+GNno/ji08ReIPHuua1Da3VxfaXo2tzWS2djcSq6NJC
Ut45m2xzSxqskrqqyHAyFI6K9+Jei210lvA0+ozM5j22ce75s4ABJG7J6bc16GH9tGUKtGOq1/G+
vpt8u55eJxGFoqUMRUVnpq9XfTbfVeXfoY3iDwD4h8aTG31TxFDH4Yup7a8n0dtNVrqFojG/kx3S
yBRGZIwSWid/mcK4+UrduLPwP4J8RXGqWmhaXB4mvMpLNpthEL6feykq7qAxydpwx5x3xRFH4s8U
SILkroGmkhiIG/0h0PIGeSGGAD937x4PSuh0Lwvpvh2PbZWypJjDTN80jdM5b0OAcDAz2rpnXlCK
pznp/LGyXTdrfZX3btqzghKrinzYeHKv5p3v/wBuxfq7P3V2TRhteeLtdkgFvaReH7VgrtNMyzSH
1G3HBwc4Kjleo6U7TvhpYRXS3epXE+sXfVmuG+RiCMHHJOAAMEke1dhRXH9ZmlamuVeX+e/4nUsr
oykp4luo1/NsvSKtFfcRW1rDZwrDbwxwQr92ONQqjJycAe9S0UVy76s9ZJRVlsQX1jBqVpLa3USz
QSja6N0P+B9+1eeXmi678P7gPoJl1HTZjlrZ4/MKvtxkhQDjvuXHQA9Bn0qiuijXlSurXi909jzc
Zl9PGWmm4zjtJbry815M4qDxl4g1DzI7bwpPFNsJVriUogPQfeVc8noDmvG/jcdf8PeI/AfjjxVp
D6v4f0S/lluLexdVazZ2j8piV6gOisuWKkqqsw38/TNQ3lnBqFpPa3UEdzbTo0UsMyB0kRhhlZTw
QQSCDWWIlGtTdOEFG9td3o79Tqy6lUweKhia1aVTluraRTUk0/hS1s9LvR6lTw94h07xXotnq+kX
cd/p12nmQ3ER4YdCMHkEEEEHBBBBAIIrRr5v8UeB/Ef7NfmeI/h/Lcar4O883OseG7phJ5S8gyRP
t3KoUgFhlhsRn8xQdvv/AIe8Q6d4r0Wz1fSLuO/067TzIbiI8MOhGDyCCCCDgggggEEVyU6jk+Sa
tJf1oezisNGmlWoy5qctn1XlLs/z3Ro0UUVueeFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAB
RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFF
FFABRRRQAUUVFc3UNnC01xNHBCv3pJGCqMnAyT7099EJtRV3sS0VzOpfEbQdN8xftn2qVMfu7ZS+
7OOjfdPX17evFVY/GOsaqsraV4bnkh2Bop7uURBtwyDtP3hn0bpjkZroWGqtczVl56fmeXLNMJGX
JGfNLtFOT/8AJUzsKZLKkEbySOscaAszscBQOpJ7CuSksfGOrLEs99Y6TC6ESfZEZ5RkdOe4PGVY
dScnioD8MUvo1Gra1qGoSITsbfgKDjgBt3PHr6elUqNOPx1F8rv/AIBnLG4mf8DDt+cmor9X+Bo6
l8RtB03zF+2fapUx+7tlL7s46N909fXt68VQWXxT4q2GNf8AhGbEoyv5n7yZycjIBAK4wP7p5yCe
MdNbaDplnMs1vp1pBMv3ZI4FVhkYOCB6Vfo9rTpr93HXu9fuW333D6risQ/9qq2j/LC8b+sr833W
OZ0/4d6LYzNPLDJqNwzs5lvX8wkkc5HCnueQTk1v2djbafGY7W3itoydxSFAgJ9cDvwPyqeisZ1a
lT45XO6jhMPhv4MFH0QUUUVkdYUUUUAFFFFABRRRQAUUUUAVNX0q117Sb3TL6Lz7K8ge2ni3Fd8b
qVZcggjIJ5BzXiH7FrXTfB+YXFx50I1SYWyeeJPJj2R5XaCfL+fe20gH5t2MMCfeq8F+DS3XgD43
+PvAK2+zRLnPiHTysAgjiV2jVkjUD5l+dY8hsA25wASQOWp7tWE/Vff/AMMevhm54SvRW/uy+SbT
t56r5HvVFFFdR5AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR
RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVk6r4q0nRWK3l/FFICFMaku4
yMjKrkgY747iuefxPrfipUXw7ZtZWrD57++UAZyeEHII+Ug4Dde3WuiGHqTXNay7vRHm1sww9GXs
0+af8sdZfd0+dkdheX9tp8YkuriK2jJ2h5nCAn0ye/B/Kub/AOE8/tGTZomlXerfPt87Hkw/dyfn
YcEccED+WSy+Hdh9qe81WSTWL+Rw7SzfKmQeMIDjGMDByOOMDiuoiiSCNI40WONAFVFGAoHQAdhV
fuae3vP7l/n+RkljsRrJqlHy96X4+6vul6nKxWPjDUJEkuNTs9JjMY/dWsAlIb0Ibvz2YjgfWpLX
wBZyXH2rV55davc58y4JCLhicKgOAvP3Tkew6V1NFJ4if2bR9Fb8d/xKjltC6dW83/ebkvufu/gQ
WdjbafGY7W3itoydxSFAgJ9cDvwPyqeiiudtvVnpxiorlirIKKKKRQUUUUAFFFFABRRRQAUUUUAF
FFFABRRRQAUUUUAFeFfG6xn8P/GT4UeL7GyjeSTUf7Du7mVyRsmO2Ndm4chZLlgwHUDdngV7rXln
7SHgXVvHHw5J0K6kttX0a6XV7ZYFcyyvEjjZGU+YSfNlSAcsoHGcjnxEXKm7brX7j0suqKGJipOy
ldPtZpr9T1OiuY+G/j/TviZ4PsNe02SMrOgFxbo+8202AXhYkA5UnqQMjDDgg109bRkpJSWxw1Kc
qU3Cas1uFFFFUZhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF
FABRRRQAUUUUAFFFFABRRRQAUUUUAVYNUs7q6ktobuCW4jzvhjkVnXBwcgHIweKtVzeu/D/R9ek8
6SFracnLS2pCF+pORggkk5zjPA5qnZeDNY0vell4nnjt+FSOa3E2xR90Dc2BgegGfSur2dGUbqdn
5r9Vf8jyXiMbTm4zoc0e8ZL8pcv5nYVV1HU7TSbVri8uI7eEfxSHGTgnAHc4B4HNczPovjBbqNYf
EUElucb5JLVFcc84UKQePcfh1qW38C/atQN3rmoSa2y4MUUieXFGeMnYDg5wOOh5yDTVKnHWc015
Xv8AikTLF4qpeFHDtS7ycVFfdJt/JfNES694g8RqW0bT49PtGQ7bvUshnyFwVUZ9SQfmU4/Com8A
3+rbzrXiC7uUlRfMt7f93GGGO3KkDH90ZPNdrRR9YcP4SUfz+9g8thW1xU5VPV2j/wCAqy++5gaJ
4G0fQVUw2qzzKQwnuAHcEEkEcYUjPYDoK36KK551JVHzTd2ejRw9LDQ5KMVFeQUUUVBuFFFFABRR
RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB86fCHwre/DX9pbxt4fiMcOh6p
pzaxbQwxIiFPPURhVBJQRmWeMDjO3O3G3H0XXhXxw09PA/xO8D/FKVJJtO09zpWqAbiLeGUSKk+F
RjhTNJuyeT5agZYmvda5KCUOan2f4M9fMJOuqWIevNFJvzjo/naz+YUUUV1nkBRRRQAUUUUAFFFF
ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA
FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU
UUUAFFFFAGH428Had8QPCuoeH9WWRrC+QI5hfY6kMGVlPqrKrDII45BGRXm/7O3jS6On3/w919fJ
8TeEsWjFiFW6tgSsUsSlVYqq7BkryGjbJL4HsleK/H7Q9W8M6jpXxQ8OPIb/AEBBDqllEXzf6eZA
zR9GUBcuxJXgMXyDGtctZODVVdN/T/gbnq4OSrReDn9rWPlL/wC22fyfQ9qorO8PeIdO8V6LZ6vp
F3Hf6ddp5kNxEeGHQjB5BBBBBwQQQQCCK0a6U01dHmSi4txkrNBRRRTJCiiigAooooAKKKKACiii
gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA
CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK
KKKAPnRdU1L9lzxVJaXkMk/wj1K6VLKcz+dNpU0iszIFPzmPKyErhvl2sGL71f3Xwv4s0bxppMep
6HqVvqlk+B5tu4baxUNtcdUYBlyrAEZ5Aq3q2kWOvafLY6nZW+o2UuPMtruJZY3wQwyrAg4IB+oF
fMdjpN1+y38aVaGLyfhp4nnjtjcSMJBaybW2K8jFfL2OznLEgxFj87KdvC3LDtdYP8P+B+R78Y08
zhLpWSv5Tt/7db7z6noooruPAP/Z</Data></Enclosure></Binary></metadata>