-
Notifications
You must be signed in to change notification settings - Fork 10
/
bdws.py
800 lines (697 loc) · 29.7 KB
/
bdws.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
from osgeo import gdal, ogr
import numpy as np
import os
import math
class BDLoG:
def __init__(self, brat, dem , fac, outDir, bratCap, stat = None):
"""
Initialization of the Beaver Dam Location Generator class.
:param brat: Path to BRAT shapefile.
:param dem: Path to DEM for area of interest.
:param fac: Binary raster representing the stream network with a value of 1 (generally a thresholded flow accumulation).
:param outDir: Path to directory where output files will be generated.
:param bratCap: Proportion (0 - 1) of capacity for which to generate beaver dams.
:param stat: (Optional) Estimated pond volumes and prediction intervals as a function of reach slope and dam height (not yet implemented).
"""
self.bratPath = brat
self.demPath = dem
self.facPath = fac
self.outDir = outDir
if not os.path.isdir(self.outDir):
os.makedirs(self.outDir)
self.bratCap = bratCap
self.statPath = stat
def setVariables(self):
"""
Sets class variables for location generation.
:return: None
"""
self.driverShp = ogr.GetDriverByName("Esri Shapefile")
self.bratDS = ogr.Open(self.bratPath, 1)
self.bratLyr = self.bratDS.GetLayer()
self.nFeat = self.bratLyr.GetFeatureCount()
self.demDS = gdal.Open(self.demPath)
self.dem = self.demDS.GetRasterBand(1).ReadAsArray()
self.facDS = gdal.Open(self.facPath)
self.fac = self.facDS.GetRasterBand(1).ReadAsArray()
self.idOut = np.full(self.dem.shape, -9999.0, dtype=np.float32)
self.geot = self.demDS.GetGeoTransform()
self.prj = self.demDS.GetProjection()
self.outDS = self.driverShp.CreateDataSource(self.outDir + "/ModeledDamPoints.shp")
self.outLyr = self.outDS.CreateLayer("ModeledDamPoints", self.bratLyr.GetSpatialRef(), geom_type=ogr.wkbPoint)
self.capRank = np.empty([self.nFeat,3])
self.driverTiff = gdal.GetDriverByName("GTiff")
def createFields(self):
"""
Creates fields to be populated for the output dam location shapefile
:return: None
"""
field = ogr.FieldDefn("brat_ID", ogr.OFTInteger)
self.outLyr.CreateField(field)
field.SetName("endx")
field.SetType(ogr.OFTReal)
self.outLyr.CreateField(field)
field.SetName("endy")
field.SetType(ogr.OFTReal)
self.outLyr.CreateField(field)
field.SetName("az_us")
field.SetType(ogr.OFTReal)
self.outLyr.CreateField(field)
field.SetName("g_elev")
field.SetType(ogr.OFTReal)
self.outLyr.CreateField(field)
field.SetName("slope")
field.SetType(ogr.OFTReal)
self.outLyr.CreateField(field)
field.SetName("ht_max")
field.SetType(ogr.OFTReal)
self.outLyr.CreateField(field)
field.SetName("damType")
field.SetType(ogr.OFTString)
self.outLyr.CreateField(field)
field.SetName("ht_lo")
field.SetType(ogr.OFTReal)
self.outLyr.CreateField(field)
field.SetName("ht_mid")
field.SetType(ogr.OFTReal)
self.outLyr.CreateField(field)
field.SetName("ht_hi")
field.SetType(ogr.OFTReal)
self.outLyr.CreateField(field)
field.SetName("ht_lo_mod")
field.SetType(ogr.OFTReal)
self.outLyr.CreateField(field)
field.SetName("ht_mid_mod")
field.SetType(ogr.OFTReal)
self.outLyr.CreateField(field)
field.SetName("ht_hi_mod")
field.SetType(ogr.OFTReal)
self.outLyr.CreateField(field)
field.SetName("area_lo")
field.SetType(ogr.OFTReal)
self.outLyr.CreateField(field)
field.SetName("area_mid")
field.SetType(ogr.OFTReal)
self.outLyr.CreateField(field)
field.SetName("area_hi")
field.SetType(ogr.OFTReal)
self.outLyr.CreateField(field)
field.SetName("vol_lo")
field.SetType(ogr.OFTReal)
self.outLyr.CreateField(field)
field.SetName("vol_mid")
field.SetType(ogr.OFTReal)
self.outLyr.CreateField(field)
field.SetName("vol_hi")
field.SetType(ogr.OFTReal)
self.outLyr.CreateField(field)
field.SetName("vol_lo_lp")
field.SetType(ogr.OFTReal)
self.outLyr.CreateField(field)
field.SetName("vol_mid_lp")
field.SetType(ogr.OFTReal)
self.outLyr.CreateField(field)
field.SetName("vol_hi_lp")
field.SetType(ogr.OFTReal)
self.outLyr.CreateField(field)
field.SetName("vol_lo_mp")
field.SetType(ogr.OFTReal)
self.outLyr.CreateField(field)
field.SetName("vol_mid_mp")
field.SetType(ogr.OFTReal)
self.outLyr.CreateField(field)
field.SetName("vol_hi_mp")
field.SetType(ogr.OFTReal)
self.outLyr.CreateField(field)
field.SetName("vol_lo_up")
field.SetType(ogr.OFTReal)
self.outLyr.CreateField(field)
field.SetName("vol_mid_up")
field.SetType(ogr.OFTReal)
self.outLyr.CreateField(field)
field.SetName("vol_hi_up")
field.SetType(ogr.OFTReal)
self.outLyr.CreateField(field)
field.SetName("diff_lo")
field.SetType(ogr.OFTReal)
self.outLyr.CreateField(field)
field.SetName("diff_mid")
field.SetType(ogr.OFTReal)
self.outLyr.CreateField(field)
field.SetName("diff_hi")
field.SetType(ogr.OFTReal)
self.outLyr.CreateField(field)
field.SetName("type")
field.SetType(ogr.OFTReal)
self.outLyr.CreateField(field)
def setBratFields(self):
"""
Set values for fields derived from the input BRAT shapefile.
:return: None
"""
if self.bratLyr.FindFieldIndex("totdams", 1) >= 0:
self.bratLyr.DeleteField(self.bratLyr.FindFieldIndex("totdams", 1))
if self.bratLyr.FindFieldIndex("totcomp", 1) >= 0:
self.bratLyr.DeleteField(self.bratLyr.FindFieldIndex("totcomp", 1))
field = ogr.FieldDefn("totdams", ogr.OFTInteger)
self.bratLyr.CreateField(field)
field = ogr.FieldDefn("totcomp", ogr.OFTInteger)
self.bratLyr.CreateField(field)
def sortByCapacity(self):
"""
Sort BRAT reaches by estimated dam capacity.
:return: None
"""
for i in range(0, self.nFeat):
feature = self.bratLyr.GetFeature(i)
cap = feature.GetFieldAsDouble("oCC_EX")
geom = feature.GetGeometryRef()
#self.capRank holds 3 variables: FID, BRAT capacity (dams/km), and number of dams to be modeled for scenario(capacity scenario * BRAT capacity)
self.capRank[i,0] = feature.GetFID()
self.capRank[i,1] = cap
self.capRank[i,2] = math.ceil(geom.Length() * (cap/1000.0))
self.capRank = self.capRank[self.capRank[:,1].argsort()[::-1]]
self.modCap = math.ceil(self.bratCap * np.sum(self.capRank[:,2]))
def calculateDamsPerReach(self):
"""
Determine the number of beaver dams and beaver dam complexes to place on each BRAT reach.
:return: None
"""
self.setBratFields()
go = True
totalDams = 0
while go:
i = 0
while i < self.nFeat and go:
bratFeat = self.bratLyr.GetFeature(self.capRank[i,0])
exDams = bratFeat.GetFieldAsInteger("totdams")
exComp = bratFeat.GetFieldAsInteger("totcomp")
#number of dams for BRAT segment randomly selected from empricial complex size distribution
damCount = math.ceil(np.random.lognormal(1.5515, 0.724))
if damCount > 0:
if damCount > self.capRank[i,2]:
damCount = self.capRank[i,2]
if (totalDams + damCount) > self.modCap:
damCount = math.ceil(self.modCap - totalDams)
bratFeat.SetField("totdams", exDams + damCount)
if damCount > 0:
bratFeat.SetField("totcomp", exComp + 1)
self.bratLyr.SetFeature(bratFeat)
totalDams += damCount
i += 1
if totalDams >= math.ceil(self.modCap):
go = False
def createDams(self):
"""
Place primary and secondary dams at a specific location on stream reaches.
:return: None
"""
i = 0
while i < self.nFeat:
bratFt = self.bratLyr.GetFeature(self.capRank[i, 0])
bratLine = bratFt.GetGeometryRef()
length = bratLine.Length()
#read number of dams and dam complexes from shapefile field
nDamCt = bratFt.GetFieldAsInteger("totdams")
nCompCt = bratFt.GetFieldAsInteger("totcomp")
spacing = 0.0
if nDamCt > 0:
spacing = length / (nDamCt * 1.0)
#create a point for each dam to be modeled
nDamRm = nDamCt
nCompRm = nCompCt
for j in range(0, nDamCt):
#determine if dam is primary or secondary and create height distribution
damFeat = ogr.Feature(self.outLyr.GetLayerDefn())
rnum = np.random.random()
if rnum < ((nCompRm*1.0)/(nDamRm*1.0)) or nDamCt == 1:
htDist = np.random.lognormal(0.22, 0.36, 30)
damType = "primary"
nCompRm -= 1
else:
htDist = np.random.lognormal(-0.21, 0.39, 30)
damType = "secondary"
nDamRm -= 1
#location of dam on stream segment
pointDist = length - (spacing * (j * 1.0))
damPoint = bratLine.Value(pointDist)
#bratLine.Value will return None if called on multipart line. This will cause a crash later in the code
if damPoint is not None:
#set any field values here
damFeat = self.setDamFieldValues(damFeat, damType)
#set dam heights
damFeat = self.setDamHeights(damFeat, np.percentile(htDist, 2.5), np.median(htDist), np.percentile(htDist, 97.5))
damFeat.SetGeometry(damPoint)
self.outLyr.CreateFeature(damFeat)
damFeat = None
i += 1
bratFt = None
def getCellAddressOfPoint(self, x, y):
"""
Calculate the row and column of a coordinate pair (linear units) based on the input DEM. UTM projections suggested, will not work with degree units.
:param x: X coordinate (meters).
:param y: Y coordinate (meters).
:return: Numpy array with row and column address (array[row, col]).
"""
col = math.floor((x - self.geot[0]) / self.geot[1])
row = math.floor((self.geot[3] - y) / abs(self.geot[5]))
address = np.array([row, col])
return address
def getCoordinatesOfCellAddress(self, row, col):
"""
Calculate the coordinate pair at the center of a cell address based on the input DEM. UTM projections suggested, will not work with degree units.
:param row: Row index of raster.
:param col: Column index of raster.
:return: Numpy array with x and y coordinates (array[x, y]).
"""
x = self.geot[0] + (col * self.geot[1]) + (0.5 * self.geot[1])
y = self.geot[3] + (row * self.geot[5]) + (0.5 * self.geot[5])
coords = np.array([x, y])
return coords
def getStreamCellAddresses(self):
"""
List addresses of cells on the stream network.
:return: Numpy array (2, n) with stream cell addresses (array[[row, col],[row, col],...]).
"""
fac = self.facDS.GetRasterBand(1).ReadAsArray()
streamcells = np.swapaxes(np.where(fac > 0), 0, 1)
return streamcells
def moveDamsToFAC(self):
"""
Set locations of generated dams to the nearest cell on the rasterized stream network. Only one dam can be present on each network cell.
:return: None
"""
streamcells = self.getStreamCellAddresses()
nDams = self.outLyr.GetFeatureCount()
i=0
while i < nDams:
#print str(i) + " of " + str(nDams)
damFt = self.outLyr.GetFeature(i)
damHpe = damFt.GetGeometryRef()
damAddress = self.getCellAddressOfPoint(damHpe.GetX(), damHpe.GetY())
dist = np.sum((streamcells - damAddress)**2, axis = 1) #distance from stream cells to dam point
#Maybe put in a check so if distance is too far it deletes the dam
index = np.where(dist == min(dist)) #index of closest stream cell
damAddress = streamcells[index[0][0]] #change cell address of dam to closest stream cell
streamcells = np.delete(streamcells, index, axis = 0) #delete stream cell so each dam is located in a different cell
self.idOut[damAddress[0]][damAddress[1]] = float(i*1.0)
damCoords = self.getCoordinatesOfCellAddress(damAddress[0], damAddress[1])
ptwkt = "POINT(%f %f)" % (damCoords[0], damCoords[1])
damHpe = ogr.CreateGeometryFromWkt(ptwkt)
damFt.SetGeometryDirectly(damHpe)
self.outLyr.SetFeature(damFt)
i += 1
def setDamFieldValues(self, feat, damType):
"""
Set attribute for dam type.
:param feat: OGR Feature of dam.
:param damType: String describing dam type ('primary' or 'secondary').
:return: Updated OGR Feature of dam.
"""
feat.SetField("damType", damType)
return feat
def setDamHeights(self, feat, low, mid, high):
"""
Set dam heights to be modeled for a dam.
:param feat: OGR Feature of dam.
:param low: Lower interval of dam height.
:param mid: Median dam height.
:param high: Upper interval of dam height.
:return: Updated OGR Feature of dam.
"""
feat.SetField("ht_lo", low)
feat.SetField("ht_mid", mid)
feat.SetField("ht_hi", high)
feat.SetField("ht_lo_mod", low)
feat.SetField("ht_mid_mod", mid)
feat.SetField("ht_hi_mod", high)
#feat.SetField("ht_max", max)
return feat
def generateDamLocationsFromBRAT(self):
"""
Generate dam locations on rasterized stream network.
:return: None
"""
self.setVariables()
self.createFields()
self.sortByCapacity()
self.calculateDamsPerReach()
self.createDams()
self.moveDamsToFAC()
def writeDamLocationRaster(self):
"""
Write dam locations to raster.
:return: None
"""
ds = self.driverTiff.Create(self.outDir + "/damID.tif", xsize=self.demDS.RasterXSize, ysize=self.demDS.RasterYSize, bands=1,
eType=gdal.GDT_Float32)
ds.SetGeoTransform(self.geot)
ds.SetProjection(self.prj)
ds.GetRasterBand(1).WriteArray(self.idOut)
ds.GetRasterBand(1).FlushCache()
ds.GetRasterBand(1).SetNoDataValue(-9999.0)
ds = None
def run(self):
"""
Generate dam locations from BRAT and output as shapefile and raster.
:return: None
"""
self.generateDamLocationsFromBRAT()
self.writeDamLocationRaster()
def close(self):
"""
Close all OGR and GDAL layers and datasets.
:return: None
"""
self.bratDS = None
self.bratLyr = None
self.demDS = None
self.facDS = None
self.outDS = None
self.outLyr = None
del self.dem
del self.fac
del self.idOut
del self.capRank
class BDSWEA:
def __init__(self, dem, fdir, fac, id, outDir, modPoints):
"""
Initialization of the Beaver Dam Surface Water Estimation Algorithm class.
:param dem: Path of DEM for area of interest.
:param fdir: Path to flow direction raster, should be concurrent with DEM.
:param fac: Path to binary raster representing the stream network with a value of 1 (generally a thresholded flow accumulation).
:param id: Path to raster of pond ID, calculated with BDLoG class.
:param outDir: Path where output files will be generated.
:param modPoints: Path to shapefile of modeled dam locations from BDLoG.
"""
self.outDir = outDir
if not os.path.isdir(self.outDir):
os.makedirs(self.outDir)
self.setConstants()
self.setVars(dem, fdir, fac, id, modPoints)
self.createOutputArrays()
# self.origrecursion = sys.getrecursionlimit()
# if self.origrecursion < 1500:
# sys.setrecursionlimit(1500)
def __exit__(self, exc_type, exc_val, exc_tb):
self.close()
def setConstants(self):
"""
Set constant variables.
:return: None
"""
self.FLOW_DIR_ESRI = np.array([32, 64, 128, 16, 0, 1, 8, 4, 2])
self.FLOW_DIR_TAUDEM = np.array([4, 3, 2, 5, 0, 1, 6, 7, 8])
self.ROW_OFFSET = np.array([-1, -1, -1, 0, 0, 0, 1, 1, 1])
self.COL_OFFSET = np.array([-1, 0, 1, -1, 0, 1, -1, 0, 1])
self.MAX_POND_AREA = 100000 #in square meters
self.MAX_HEIGHT = 5.0 #in meters
def setVars(self, dem, fdir, fac, id, shp):
"""
Set class variables.
:param dem: Path to DEM.
:param fdir: Path to flow direction raster.
:param fac: Path to binary raster representing the stream network with a value of 1 (generally a thresholded flow accumulation).
:param id: Path to dam ID raster.
:param shp: Path to shapefile of dam locations.
:return: None
"""
self.count = 0
self.demDS = gdal.Open(dem)
self.dem = self.demDS.GetRasterBand(1).ReadAsArray()
self.fdirDS = gdal.Open(fdir)
self.fdir = self.fdirDS.GetRasterBand(1).ReadAsArray()
self.facDS = gdal.Open(fac)
self.fac = self.facDS.GetRasterBand(1).ReadAsArray()
self.idDS = gdal.Open(id)
self.id = self.idDS.GetRasterBand(1).ReadAsArray()
self.pointDS = ogr.Open(shp, 1)
self.points = self.pointDS.GetLayer()
self.nPoints = self.points.GetFeatureCount()
self.geot = self.demDS.GetGeoTransform()
self.prj = self.demDS.GetProjection()
self.MAX_COUNT = math.ceil(self.MAX_POND_AREA / abs(self.geot[1] * self.geot[5]) / 1)
self.driverTiff = gdal.GetDriverByName("GTiff")
max = np.max(self.fdir)
if max > 8:
self.FLOW_DIR = self.FLOW_DIR_ESRI
else:
self.FLOW_DIR = self.FLOW_DIR_TAUDEM
def createOutputArrays(self):
"""
Create arrays which will be written to rasters.
:return: None
"""
self.idOut = np.copy(self.id)
self.htOut = np.empty(shape=[self.dem.shape[0], self.dem.shape[1]])
self.htOut.fill(-9999.0)
self.depLo = np.empty(shape=[self.dem.shape[0], self.dem.shape[1]])
self.depLo.fill(-9999.0)
self.depMid = np.empty(shape=[self.dem.shape[0], self.dem.shape[1]])
self.depMid.fill(-9999.0)
self.depHi = np.empty(shape=[self.dem.shape[0], self.dem.shape[1]])
self.depHi.fill(-9999.0)
def getDamId(self):
"""
:return: Numpy array of original dam ID raster.
"""
return self.id
def getDEM(self):
"""
:return: Numpy array of DEM.
"""
return self.dem
def getFlowDirection(self):
"""
:return: Numpy array of flow direction raster.
"""
return self.fdir
def getHeightAbove(self):
"""
:return: Numpy array of the height of cells above a beaver dam.
"""
return self.htOut
def getPondID(self):
"""
:return: Numpy array of the dam ID associated with each beaver pond.
"""
return self.idOut
def drainsToMe(self, index, fdir):
"""
Determine if a neighboring cell drains to a target cell.
:param index: Location of flow direction value in array.
:param fdir: Flow direction value.
:return: True if cell drains to center of 3x3, False if it does not
"""
if index == 4:
return False
elif index == 0 and fdir == self.FLOW_DIR[8]:
return True
elif index == 1 and fdir == self.FLOW_DIR[7]:
return True
elif index == 2 and fdir == self.FLOW_DIR[6]:
return True
elif index == 3 and fdir == self.FLOW_DIR[5]:
return True
elif index == 5 and fdir == self.FLOW_DIR[3]:
return True
elif index == 6 and fdir == self.FLOW_DIR[2]:
return True
elif index == 7 and fdir == self.FLOW_DIR[1]:
return True
elif index == 8 and fdir == self.FLOW_DIR[0]:
return True
else:
return False
def backwardHAND(self, startX, startY, startE, pondID):
"""
Recursively identify all cells draining to a dam location and the height of each cell above the dam.
:param startX: Column of dam location.
:param startY: Row of dam location.
:param startE: DEM elevation at dam location.
:param pondID: ID number of dam.
:return: None
"""
if startX > 0 and startY > 0 and startX < self.demDS.RasterXSize-1 and startY < self.demDS.RasterYSize-1:
demWin = self.dem[startY - 1:startY + 2, startX - 1:startX + 2].reshape(1, 9)
fdirWin = self.fdir[startY - 1:startY + 2, startX - 1:startX + 2].reshape(1, 9)
for i in range(0,9):
newX = startX
newY = startY
htAbove = demWin[0, i] - startE
if (self.drainsToMe(i, fdirWin[0,i]) and htAbove < self.MAX_HEIGHT and htAbove > -10.0) and self.count < self.MAX_COUNT:
newX += self.COL_OFFSET[i]
newY += self.ROW_OFFSET[i]
htOld = self.htOut[newY, newX]
if (htOld >= htAbove or htOld == -9999.0):
self.idOut[newY, newX] = pondID
self.htOut[newY, newX] = htAbove
self.count += 1
self.backwardHAND(newX, newY, startE, pondID)
def heightAboveDams(self):
"""
For each cell draining to a beaver dam, calculate the height of cell above the dam location.
:return: None
"""
for i in range(1, self.fdir.shape[0]):
for j in range(1, self.fdir.shape[1]):
idVal = self.id[i,j]
if idVal >= 0:
demVal = self.dem[i,j]
self.count = 0
self.backwardHAND(j, i, demVal, idVal)
def calculateWaterDepth(self):
"""
Calculate the depth of each beaver pond cell for each modeled dam height.
:return: None
"""
self.dem[self.dem == -9999.0] = np.nan
self.htOut[self.htOut == -9999.0] = np.nan
for i in range(0, self.points.GetFeatureCount()):
feature = self.points.GetFeature(i)
self.depLo[self.idOut == i] = feature.GetFieldAsDouble("ht_lo_mod") - self.htOut[self.idOut == i]
self.depMid[self.idOut == i] = feature.GetFieldAsDouble("ht_mid_mod") - self.htOut[self.idOut == i]
self.depHi[self.idOut == i] = feature.GetFieldAsDouble("ht_hi_mod") - self.htOut[self.idOut == i]
self.dem[self.dem == np.nan] = -9999.0
self.htOut[self.htOut == np.nan] = -9999.0
self.depLo[self.depLo == np.nan] = -9999.0
self.depMid[self.depLo == np.nan] = -9999.0
self.depHi[self.depLo == np.nan] = -9999.0
def writeArrayToRaster(self, file, array, lowernd, uppernd):
"""
Save numpy array as a GeoTiff raster concurrent with the input DEM.
:param file: Path to save file.
:param array: Numpy array of data.
:param lowernd: Lowest data value.
:param uppernd: Highest data value.
:return: None
"""
if array.shape == self.dem.shape:
ds = self.driverTiff.Create(file, xsize=self.demDS.RasterXSize, ysize=self.demDS.RasterYSize, bands=1, eType=gdal.GDT_Float32)
ds.SetGeoTransform(self.geot)
ds.SetProjection(self.prj)
array[np.isnan(array)] = -9999.0
array[array < lowernd] = -9999.0
array[array > uppernd] = -9999.0
ds.GetRasterBand(1).WriteArray(array)
ds.GetRasterBand(1).FlushCache()
ds.GetRasterBand(1).SetNoDataValue(-9999.0)
ds = None
else:
print "output shape different from input DEM"
def saveOutputs(self):
"""
Save BDSWEA results to rasters.
:return: None
"""
self.writeArrayToRaster(self.outDir + "/pondID.tif", self.idOut, 0.0, 50000.0)
self.writeArrayToRaster(self.outDir + "/htAbove.tif", self.htOut, -500.0, 5000.0)
self.writeArrayToRaster(self.outDir + "/depLo.tif", self.depLo, 0.0000001, 20.0)
self.writeArrayToRaster(self.outDir + "/depMid.tif", self.depMid, 0.0000001, 20.0)
self.writeArrayToRaster(self.outDir + "/depHi.tif", self.depHi, 0.0000001, 20.0)
def run(self):
"""
Run BDSWEA and save outputs.
:return: None
"""
print "running BDSWEA"
self.heightAboveDams()
self.calculateWaterDepth()
self.saveOutputs()
print "calculating pond statistics"
self.summarizePondStatistics()
def summarizePondStatistics(self):
"""
Caclulate area and volume of each pond for each dam height scenario and write results to the input shapefile.
:return: None
"""
for i in range(0, self.nPoints):
feature = self.points.GetFeature(i)
fid = feature.GetFID()
lo = np.where(self.idOut == fid, self.depLo, 0.0) #identify cells inundated by dam of FID and get pond depth
lo[lo == -9999.0] = 0.0
lo[lo < 0.0] = 0.0 #any pond depths less than 0 get changed to 0.0
mid = np.where(self.idOut == fid, self.depMid, 0.0)
mid[mid == -9999.0] = 0.0
mid[mid < 0.0] = 0.0
hi = np.where(self.idOut == fid, self.depHi, 0.0)
hi[hi == -9999.0] = 0.0
hi[hi <=0.0] = 0.0
feature.SetField("vol_lo", math.fabs(np.nansum(lo)*self.geot[1]*self.geot[5])) #volume of pond is sum of depths multiplied by cell width and cell height
feature.SetField("vol_mid", math.fabs(np.nansum(mid) * self.geot[1] * self.geot[5]))
feature.SetField("vol_hi", math.fabs(np.nansum(hi) * self.geot[1] * self.geot[5]))
feature.SetField("area_lo", math.fabs(len(np.where(lo != 0.0)[0]) * self.geot[1] * self.geot[5]))
feature.SetField("area_mid", math.fabs(len(np.where(mid != 0.0)[0]) * self.geot[1] * self.geot[5]))
feature.SetField("area_hi", math.fabs(len(np.where(hi != 0.0)[0]) * self.geot[1] * self.geot[5]))
self.points.SetFeature(feature)
self.points.SyncToDisk()
def writeSurfaceWSE(self):
"""
Update DEM to reflect water surface elevation of modeled beaver ponds and save as GeoTiff.
:return: None
"""
self.depLo[self.depLo < 0.0] = 0.0
self.depMid[self.depMid < 0.0] = 0.0
self.depHi[self.depHi < 0.0] = 0.0
self.wseLo = self.depLo + self.dem
self.wseMid = self.depMid + self.dem
self.wseHi = self.depHi + self.dem
self.writeArrayToRaster(self.outDir + "/WSESurf_lo.tif", self.wseLo, 0.0, 5000.0)
self.writeArrayToRaster(self.outDir + "/WSESurf_mid.tif", self.wseMid, 0.0, 5000.0)
self.writeArrayToRaster(self.outDir + "/WSESurf_hi.tif", self.wseHi, 0.0, 5000.0)
def writeHead(self):
"""
Calculate water surface elevation of cells inundated by modeld beaver ponds or represented by the rasterized stream network and save as GeoTiff.
:return: None
"""
stream = self.fac
stream[stream < 1.0] = 0.0
stream[stream > 0.0] = 1.0
pondlo = self.depLo
pondlo[pondlo > 0.0] = 1.0
pondlo[pondlo < 0.0] = 0.0
pondlo = pondlo + stream
pondlo[pondlo > 0.0] = 1.0
pondmid = self.depMid
pondmid[pondmid > 0.0] = 1.0
pondmid[pondmid < 0.0] = 0.0
pondmid = pondmid +stream
pondmid[pondmid > 0.0] = 1.0
pondhi = self.depHi
pondhi[pondhi > 0.0] = 1.0
pondhi[pondhi < 0.0] = 0.0
pondhi = pondhi + stream
pondhi[pondhi > 0.0] = 1.0
self.writeArrayToRaster(self.outDir + "/head_start.tif", self.dem*stream, 1.0, 5000.0)
self.writeArrayToRaster(self.outDir + "/head_lo.tif", self.wseLo*pondlo, 1.0, 5000.0)
self.writeArrayToRaster(self.outDir + "/head_mid.tif", self.wseMid*pondmid, 1.0, 5000.0)
self.writeArrayToRaster(self.outDir + "/head_hi.tif", self.wseHi*pondhi, 1.0, 5000.0)
def writeModflowFiles(self):
"""
Save files to be used with BDflopy for MODFLOW parameterization.
:return: None
"""
self.writeSurfaceWSE()
self.writeHead()
del self.wseLo
del self.wseMid
del self.wseHi
def close(self):
"""
Close all GDAL and OGR datasets.
:return: None
"""
# sys.setrecursionlimit(self.origrecursion)
self.demDS = None
self.fdirDS = None
self.idDS = None
self.pointDS = None
self.points = None
del self.dem
del self.fdir
del self.fac
del self.depLo
del self.depMid
del self.depHi
del self.htOut
del self.idOut