-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_learning_grid.py
516 lines (431 loc) · 20.7 KB
/
run_learning_grid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
import gym
import time
import numpy as np
import pandas as pd
import gridworld
import torch
import torch.autograd as autograd
import torch.multiprocessing as mp
from agents.dqn import CNN_DDQN, MLP_DQN, MLP_DDQN, init_agent
from utils.general_dqn import command_line_dqn_grid, ReplayBuffer, update_target, epsilon_by_episode
from utils.general_dqn import compute_td_loss, get_logging_stats, run_multiple_times
from utils.smdp_helpers_dqn import MacroBuffer, macro_action_exec, get_macro_from_agent
from utils.smdp_helpers_dqn import command_line_grammar_dqn
from utils.atari_wrapper import make_atari, wrap_deepmind, wrap_pytorch
SEQ_DIR = "grammars/sequitur/"
LEXIS_DIR = "grammars/Lexis/"
log_template = "Step {:>2} | T {:.1f} | Median R {:.1f} | Mean R {:.1f} | Median S {:.1f} | Mean S {:.1f}"
def run_dqn_learning(args):
np.random.seed(args.seed)
torch.manual_seed(args.seed)
# Set the GPU device on which to run the agent
USE_CUDA = torch.cuda.is_available()
if USE_CUDA:
torch.cuda.set_device(args.device_id)
print("USING CUDA DEVICE {}".format(args.device_id))
else:
print("USING CPU")
Variable = lambda *args, **kwargs: autograd.Variable(*args, **kwargs).cuda() if USE_CUDA else autograd.Variable(*args, **kwargs)
start = time.time()
# Extract variables for arguments
TRAIN_BATCH_SIZE = args.TRAIN_BATCH_SIZE
EPS_START, EPS_STOP, EPS_DECAY = args.EPS_START, args.EPS_STOP, args.EPS_DECAY
GAMMA, L_RATE = args.GAMMA, args.L_RATE
NUM_UPDATES = args.NUM_UPDATES
NUM_ROLLOUTS = args.NUM_ROLLOUTS
MAX_STEPS = args.MAX_STEPS
ROLLOUT_EVERY = args.ROLLOUT_EVERY
UPDATE_EVERY = args.UPDATE_EVERY
VERBOSE = args.VERBOSE
PRINT_EVERY = args.PRINT_EVERY
CAPACITY = args.CAPACITY
ENV_ID = args.ENV_ID
AGENT = args.AGENT
AGENT_FNAME = args.AGENT_FNAME
STATS_FNAME = args.SAVE_FNAME
if args.DOUBLE: TRAIN_DOUBLE = True
else: TRAIN_DOUBLE = False
# Setup agent, replay replay_buffer, logging stats df
if AGENT == "MLP-DQN" or AGENT == "DOUBLE":
agents, optimizer = init_agent(MLP_DQN, L_RATE, USE_CUDA)
elif AGENT == "MLP-Dueling-DQN":
agents, optimizer = init_agent(MLP_DDQN, L_RATE, USE_CUDA)
elif AGENT == "CNN-Dueling-DQN":
agents, optimizer = init_agent(CNN_DDQN, L_RATE, USE_CUDA)
replay_buffer = ReplayBuffer(capacity=CAPACITY)
reward_stats = pd.DataFrame(columns=["opt_counter", "rew_mean", "rew_sd",
"rew_median", "rew_10th_p", "rew_90th_p"])
step_stats = pd.DataFrame(columns=["opt_counter", "steps_mean", "steps_sd",
"steps_median", "steps_10th_p", "steps_90th_p"])
# Initialize optimization update counter and environment
opt_counter = 0
if ENV_ID == "dense-v0":
env = gym.make(ENV_ID)
else:
# Wrap the ATARI env in DeepMind Wrapper
env = make_atari(ENV_ID)
env = wrap_deepmind(env, episode_life=True, clip_rewards=True,
frame_stack=True, scale=True)
env = wrap_pytorch(env)
# RUN TRAINING LOOP OVER EPISODES
while opt_counter < NUM_UPDATES:
epsilon = epsilon_by_episode(opt_counter + 1, EPS_START, EPS_STOP, EPS_DECAY)
obs = env.reset()
ep_id = 0
steps = 0
while steps < MAX_STEPS:
if ENV_ID == "dense-v0":
action = agents["current"].act(obs.flatten(), epsilon)
else:
action = agents["current"].act(obs, epsilon)
next_obs, rew, done, _ = env.step(action)
steps += 1
# Push transition to ER Buffer
replay_buffer.push(ep_id, steps, obs, action,
rew, next_obs, done)
if len(replay_buffer) > TRAIN_BATCH_SIZE:
opt_counter += 1
loss = compute_td_loss(agents, optimizer, replay_buffer,
TRAIN_BATCH_SIZE, GAMMA, Variable,
TRAIN_DOUBLE, ENV_ID)
# On-Policy Rollout for Performance evaluation
if (opt_counter+1) % ROLLOUT_EVERY == 0:
r_stats, s_stats = get_logging_stats(opt_counter, agents,
GAMMA, NUM_ROLLOUTS,
MAX_STEPS, ENV_ID)
reward_stats = pd.concat([reward_stats, r_stats], axis=0)
step_stats = pd.concat([step_stats, s_stats], axis=0)
if (opt_counter+1) % UPDATE_EVERY == 0:
update_target(agents["current"], agents["target"])
if VERBOSE and (opt_counter+1) % PRINT_EVERY == 0:
stop = time.time()
print(log_template.format(opt_counter+1, stop-start,
r_stats.loc[0, "rew_median"],
r_stats.loc[0, "rew_mean"],
s_stats.loc[0, "steps_median"],
s_stats.loc[0, "steps_mean"]))
start = time.time()
if args.SAVE:
if ENV_ID == "dense-v0":
# Gridworld - Updates after which to save expert/transfer agent
save_after_upd = [250000, 500000, 1000000]
else:
# ATARI - Updates after which to save expert/transfer agent
save_after_upd = [1000000, 2500000, 5000000]
if opt_counter+1 in save_after_upd:
agent_path = "agents/trained/" + str(opt_counter+1) + "_" + AGENT_FNAME
torch.save(agents["current"].state_dict(), agent_path)
print("Saved expert agent to {}".format(agent_path))
# Go to next episode if current one terminated or update obs
if done: break
else: obs = next_obs
ep_id += 1
# Save the logging dataframe
df_to_save = pd.concat([reward_stats, step_stats], axis=1)
df_to_save = df_to_save.loc[:,~df_to_save.columns.duplicated()]
df_to_save = df_to_save.reset_index()
if args.SAVE:
# Finally save all results!
torch.save(agents["current"].state_dict(), "agents/" + str(NUM_UPDATES) + "_" + AGENT_FNAME)
df_to_save.to_csv("results/" + args.AGENT + "_" + STATS_FNAME)
return df_to_save
def run_smdp_dqn_learning(args):
np.random.seed(args.seed)
torch.manual_seed(args.seed)
# Set the GPU device on which to run the agent
USE_CUDA = torch.cuda.is_available()
if USE_CUDA:
torch.cuda.set_device(args.device_id)
print("USING CUDA DEVICE {}".format(args.device_id))
else:
print("USING CPU")
Variable = lambda *args, **kwargs: autograd.Variable(*args, **kwargs).cuda() if USE_CUDA else autograd.Variable(*args, **kwargs)
start = time.time()
# Extract variables for arguments
TRAIN_BATCH_SIZE = args.TRAIN_BATCH_SIZE
EPS_START, EPS_STOP, EPS_DECAY = args.EPS_START, args.EPS_STOP, args.EPS_DECAY
GAMMA, L_RATE = args.GAMMA, args.L_RATE
NUM_UPDATES = args.NUM_UPDATES
NUM_ROLLOUTS = args.NUM_ROLLOUTS
MAX_STEPS = args.MAX_STEPS
ROLLOUT_EVERY = args.ROLLOUT_EVERY
UPDATE_EVERY = args.UPDATE_EVERY
VERBOSE = args.VERBOSE
PRINT_EVERY = args.PRINT_EVERY
CAPACITY = args.CAPACITY
ENV_ID = args.ENV_ID
AGENT = args.AGENT
AGENT_FNAME = args.AGENT_FNAME
STATS_FNAME = args.SAVE_FNAME
# Get macros from expert dqn rollout
LOAD_CKPT = args.LOAD_CKPT
NUM_MACROS = args.NUM_MACROS
GRAMMAR_TYPE = args.GRAMMAR_TYPE
if GRAMMAR_TYPE == "sequitur":
GRAMMAR_DIR = SEQ_DIR
elif GRAMMAR_TYPE == "lexis":
GRAMMAR_DIR = LEXIS_DIR
macros, counts, stats = get_macro_from_agent(NUM_MACROS, 4, USE_CUDA, AGENT,
LOAD_CKPT, GRAMMAR_DIR, ENV_ID,
g_type=GRAMMAR_TYPE)
NUM_ACTIONS = 4 + NUM_MACROS
if AGENT == "DOUBLE": TRAIN_DOUBLE = True
else: TRAIN_DOUBLE = False
# Setup agent, replay replay_buffer, logging stats df
if AGENT == "MLP-DQN" or AGENT == "DOUBLE":
agents, optimizer = init_agent(MLP_DQN, L_RATE, USE_CUDA, NUM_ACTIONS)
elif AGENT == "MLP-Dueling-DQN":
agents, optimizer = init_agent(MLP_DDQN, L_RATE, USE_CUDA, NUM_ACTIONS)
elif AGENT == "CNN-Dueling-DQN":
agents, optimizer = init_agent(CNN_DDQN, L_RATE, USE_CUDA, NUM_ACTIONS)
replay_buffer = ReplayBuffer(capacity=args.CAPACITY)
reward_stats = pd.DataFrame(columns=["opt_counter", "rew_mean", "rew_sd",
"rew_median", "rew_10th_p", "rew_90th_p"])
step_stats = pd.DataFrame(columns=["opt_counter", "steps_mean", "steps_sd",
"steps_median", "steps_10th_p", "steps_90th_p"])
# Initialize optimization update counter and environment
opt_counter = 0
if ENV_ID == "dense-v0":
env = gym.make(ENV_ID)
else:
# Wrap the ATARI env in DeepMind Wrapper
env = make_atari(ENV_ID)
env = wrap_deepmind(env, episode_life=True, clip_rewards=True,
frame_stack=True, scale=True)
env = wrap_pytorch(env)
ep_id = 0
# RUN TRAINING LOOP OVER EPISODES
while opt_counter < NUM_UPDATES:
epsilon = epsilon_by_episode(ep_id + 1, EPS_START, EPS_STOP, EPS_DECAY)
obs = env.reset()
steps = 0
while steps < MAX_STEPS:
if ENV_ID == "dense-v0":
action = agents["current"].act(obs.flatten(), epsilon)
else:
action = agents["current"].act(obs, epsilon)
if action < 4:
next_obs, rew, done, _ = env.step(action)
steps += 1
# Push transition to ER Buffer
replay_buffer.push(ep_id, steps, obs, action,
rew, next_obs, done)
else:
# Need to execute a macro action
macro = macros[action - 4]
next_obs, macro_rew, done, _ = macro_action_exec(ep_id, obs,
steps,
replay_buffer,
macro, env,
GAMMA)
steps += len(macro)
if len(replay_buffer) > TRAIN_BATCH_SIZE:
opt_counter += 1
loss = compute_td_loss(agents, optimizer, replay_buffer,
TRAIN_BATCH_SIZE, GAMMA, Variable,
TRAIN_DOUBLE, ENV_ID)
ep_id += 1
# On-Policy Rollout for Performance evaluation
if (opt_counter+1) % ROLLOUT_EVERY == 0:
r_stats, s_stats = get_logging_stats(opt_counter, agents,
GAMMA, NUM_ROLLOUTS,
MAX_STEPS, ENV_ID, macros)
reward_stats = pd.concat([reward_stats, r_stats], axis=0)
step_stats = pd.concat([step_stats, s_stats], axis=0)
if (opt_counter+1) % UPDATE_EVERY == 0:
update_target(agents["current"], agents["target"])
if VERBOSE and (opt_counter+1) % PRINT_EVERY == 0:
stop = time.time()
print(log_template.format(opt_counter+1, stop-start,
r_stats.loc[0, "rew_median"],
r_stats.loc[0, "rew_mean"],
s_stats.loc[0, "steps_median"],
s_stats.loc[0, "steps_mean"]))
start = time.time()
# Go to next episode if current one terminated or update obs
if done: break
else: obs = next_obs
ep_id +=1
# Save the logging dataframe
df_to_save = pd.concat([reward_stats, step_stats], axis=1)
df_to_save = df_to_save.loc[:,~df_to_save.columns.duplicated()]
df_to_save = df_to_save.reset_index()
if args.SAVE:
# Finally save all results!
torch.save(agents["current"].state_dict(),
"agents/" + AGENT + "_" + AGENT_FNAME)
df_to_save.to_csv("results/" + str(NUM_MACROS) + "_" + STATS_FNAME)
return df_to_save
def run_online_dqn_smdp_learning(args):
np.random.seed(args.seed)
torch.manual_seed(args.seed)
# Set the GPU device on which to run the agent
USE_CUDA = torch.cuda.is_available()
if USE_CUDA:
torch.cuda.set_device(args.device_id)
print("USING CUDA DEVICE {}".format(args.device_id))
else:
print("USING CPU")
Variable = lambda *args, **kwargs: autograd.Variable(*args, **kwargs).cuda() if USE_CUDA else autograd.Variable(*args, **kwargs)
start = time.time()
# Extract variables for arguments
TRAIN_BATCH_SIZE = args.TRAIN_BATCH_SIZE
EPS_START, EPS_STOP, EPS_DECAY = args.EPS_START, args.EPS_STOP, args.EPS_DECAY
GAMMA, L_RATE = args.GAMMA, args.L_RATE
NUM_UPDATES = args.NUM_UPDATES
NUM_ROLLOUTS = args.NUM_ROLLOUTS
MAX_STEPS = args.MAX_STEPS
ROLLOUT_EVERY = args.ROLLOUT_EVERY
UPDATE_EVERY = args.UPDATE_EVERY
VERBOSE = args.VERBOSE
PRINT_EVERY = args.PRINT_EVERY
CAPACITY = args.CAPACITY
ENV_ID = args.ENV_ID
AGENT = args.AGENT
AGENT_FNAME = args.AGENT_FNAME
STATS_FNAME = args.SAVE_FNAME
# Get macros from expert dqn rollout
LOAD_CKPT = args.LOAD_CKPT
NUM_MACROS = args.NUM_MACROS
GRAMMAR_TYPE = args.GRAMMAR_TYPE
GRAMMAR_EVERY = args.GRAMMAR_EVERY
if GRAMMAR_TYPE == "sequitur":
GRAMMAR_DIR = SEQ_DIR
elif GRAMMAR_TYPE == "lexis":
GRAMMAR_DIR = LEXIS_DIR
NUM_ACTIONS = 4 + NUM_MACROS
if AGENT == "DOUBLE": TRAIN_DOUBLE = True
else: TRAIN_DOUBLE = False
# Setup agent, replay replay_buffer, logging stats df
if AGENT == "MLP-DQN" or AGENT == "DOUBLE":
agents, optimizer = init_agent(MLP_DQN, L_RATE, USE_CUDA)
elif AGENT == "MLP-Dueling-DQN":
agents, optimizer = init_agent(MLP_DDQN, L_RATE, USE_CUDA)
elif AGENT == "CNN-Dueling-DQN":
agents, optimizer = init_agent(CNN_DDQN, L_RATE, USE_CUDA)
# Get random rollout and add num-macros actions
torch.save(agents["current"].state_dict(), LOAD_CKPT)
macros, counts, stats = get_macro_from_agent(NUM_MACROS, 4, USE_CUDA,
AGENT, LOAD_CKPT, GRAMMAR_DIR, ENV_ID,
g_type=GRAMMAR_TYPE)
# Setup agent, replay replay_buffer, logging stats df
if AGENT == "MLP-DQN" or AGENT == "DOUBLE":
agents, optimizer = init_agent(MLP_DQN, L_RATE, USE_CUDA, NUM_ACTIONS)
elif AGENT == "MLP-Dueling-DQN":
agents, optimizer = init_agent(MLP_DDQN, L_RATE, USE_CUDA, NUM_ACTIONS)
elif AGENT == "CNN-Dueling-DQN":
agents, optimizer = init_agent(CNN_DDQN, L_RATE, USE_CUDA, NUM_ACTIONS)
replay_buffer = ReplayBuffer(capacity=args.CAPACITY)
macro_buffer = MacroBuffer(capacity=args.CAPACITY)
reward_stats = pd.DataFrame(columns=["opt_counter", "rew_mean", "rew_sd",
"rew_median", "rew_10th_p", "rew_90th_p"])
step_stats = pd.DataFrame(columns=["opt_counter", "steps_mean", "steps_sd",
"steps_median", "steps_10th_p", "steps_90th_p"])
# Initialize optimization update counter and environment
opt_counter = 0
if ENV_ID == "dense-v0":
env = gym.make(ENV_ID)
else:
# Wrap the ATARI env in DeepMind Wrapper
env = make_atari(ENV_ID)
env = wrap_deepmind(env, episode_life=True, clip_rewards=True,
frame_stack=True, scale=True)
env = wrap_pytorch(env)
if ENV_ID == "dense-v0":
NUM_PRIMITIVES = 4
elif ENV_ID == "PongNoFrameskip-v4":
NUM_PRIMITIVES = 6
elif ENV_ID == "SeaquestNoFrameskip-v4":
NUM_PRIMITIVES = 18
elif ENV_ID == "MsPacmanNoFrameskip-v4":
NUM_PRIMITIVES = 9
ep_id = 0
# RUN TRAINING LOOP OVER EPISODES
while opt_counter < NUM_UPDATES:
epsilon = epsilon_by_episode(ep_id + 1, EPS_START, EPS_STOP, EPS_DECAY)
obs = env.reset()
steps = 0
while steps < MAX_STEPS:
if ENV_ID == "dense-v0":
action = agents["current"].act(obs.flatten(), epsilon)
else:
action = agents["current"].act(obs, epsilon)
if action < NUM_PRIMITIVES:
next_obs, rew, done, _ = env.step(action)
steps += 1
# Push transition to ER Buffer
replay_buffer.push(ep_id, steps, obs, action,
rew, next_obs, done)
else:
# Need to execute a macro action
macro = macros[action - NUM_PRIMITIVES]
next_obs, macro_rew, done, _ = macro_action_exec(ep_id, obs,
steps,
replay_buffer,
macro, env,
GAMMA)
steps += len(macro)
# Push macro transition to ER Buffer
macro_buffer.push(ep_id, steps, obs, action,
macro_rew, next_obs,
done, len(macro), macro)
if len(replay_buffer) > TRAIN_BATCH_SIZE:
opt_counter += 1
loss = compute_td_loss(agents, optimizer, replay_buffer,
TRAIN_BATCH_SIZE, GAMMA, Variable,
TRAIN_DOUBLE, ENV_ID)
# Check for Online Transfer
if (opt_counter+1) % GRAMMAR_EVERY == 0:
torch.save(agents["current"].state_dict(), LOAD_CKPT)
macros, counts, stats = get_macro_from_agent(NUM_MACROS, NUM_ACTIONS, USE_CUDA,
AGENT, LOAD_CKPT, GRAMMAR_DIR,
ENV_ID, macros, GRAMMAR_TYPE)
# On-Policy Rollout for Performance evaluation
if (opt_counter+1) % ROLLOUT_EVERY == 0:
r_stats, s_stats = get_logging_stats(opt_counter, agents,
GAMMA, NUM_ROLLOUTS,
MAX_STEPS, ENV_ID)
reward_stats = pd.concat([reward_stats, r_stats], axis=0)
step_stats = pd.concat([step_stats, s_stats], axis=0)
if VERBOSE and (opt_counter+1) % PRINT_EVERY == 0:
stop = time.time()
print(log_template.format(opt_counter+1, stop-start,
r_stats.loc[0, "rew_median"],
r_stats.loc[0, "rew_mean"],
s_stats.loc[0, "steps_median"],
s_stats.loc[0, "steps_mean"]))
start = time.time()
if (opt_counter+1) % UPDATE_EVERY == 0:
update_target(agents["current"], agents["target"])
# Go to next episode if current one terminated or update obs
if done: break
else: obs = next_obs
ep_id +=1
# Finally save all results!
df_to_save = pd.concat([reward_stats, step_stats], axis=1)
df_to_save = df_to_save.loc[:,~df_to_save.columns.duplicated()]
df_to_save = df_to_save.reset_index()
if args.SAVE:
torch.save(agents["current"].state_dict(), "agents/online_" + AGENT_FNAME)
# Save the logging dataframe
df_to_save.to_csv("results/online_" + STATS_FNAME)
return df_to_save
if __name__ == "__main__":
dqn_args = command_line_dqn_grid(parent=True)
all_args = command_line_grammar_dqn(dqn_args)
if all_args.RUN_TIMES == 1:
print("START RUNNING {} AGENT LEARNING FOR 1 TIME".format(all_args.AGENT))
if all_args.RUN_EXPERT_GRAMMAR:
run_smdp_dqn_learning(all_args)
elif all_args.RUN_ONLINE_GRAMMAR:
run_online_dqn_smdp_learning(all_args)
else:
run_dqn_learning(all_args)
else:
mp.set_start_method('forkserver', force=True)
if all_args.RUN_EXPERT_GRAMMAR:
run_multiple_times(all_args, run_smdp_dqn_learning)
elif all_args.RUN_ONLINE_GRAMMAR:
run_multiple_times(all_args, run_online_dqn_smdp_learning)
else:
run_multiple_times(all_args, run_dqn_learning)