-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRRBotTensorFlowObjectDetection.java
234 lines (206 loc) · 11.6 KB
/
RRBotTensorFlowObjectDetection.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
/* Copyright (c) 2019 FIRST. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted (subject to the limitations in the disclaimer below) provided that
* the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* Neither the name of FIRST nor the names of its contributors may be used to endorse or
* promote products derived from this software without specific prior written permission.
*
* NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS
* LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.firstinspires.ftc.teamcode;
import com.qualcomm.robotcore.eventloop.opmode.Disabled;
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
import com.qualcomm.robotcore.util.ElapsedTime;
import org.firstinspires.ftc.robotcore.external.ClassFactory;
import org.firstinspires.ftc.robotcore.external.navigation.VuforiaLocalizer;
import org.firstinspires.ftc.robotcore.external.navigation.VuforiaLocalizer.CameraDirection;
import org.firstinspires.ftc.robotcore.external.tfod.Recognition;
import org.firstinspires.ftc.robotcore.external.tfod.TFObjectDetector;
import java.util.List;
/**
* This 2022-2023 OpMode illustrates the basics of using the TensorFlow Object Detection API to
* determine which image is being presented to the robot.
*
* Use Android Studio to Copy this Class, and Paste it into your team's code folder with a new name.
* Remove or comment out the @Disabled line to add this OpMode to the Driver Station OpMode list.
*
* IMPORTANT: In order to use this OpMode, you need to obtain your own Vuforia license key as
* is explained below.
*/
/**
* Processes the computer vision for the robot
* @author Visvam Rajesh
* @since 2022-10-06
*/
@Autonomous(name = "RRBot TensorFlow Object Detection", group = "Auton")
public class RRBotTensorFlowObjectDetection extends LinearOpMode {
/*
* Specify the source for the Tensor Flow Model.
* If the TensorFlowLite object model is included in the Robot Controller App as an "asset",
* the OpMode must to load it using loadModelFromAsset(). However, if a team generated model
* has been downloaded to the Robot Controller's SD FLASH memory, it must to be loaded using loadModelFromFile()
* Here we assume it's an Asset. Also see method initTfod() below .
*/
private static final String TFOD_MODEL_ASSET = "PowerPlay.tflite";
private static final String TFOD_MODEL_FILE = "/sdcard/FIRST/tflitemodels/RRBotTeamModel.tflite";
// Declare OpMode members.
RRBotHardware robot = new RRBotHardware();
RRBotBasicSwerve drive = new RRBotBasicSwerve(robot);
private ElapsedTime runtime = new ElapsedTime();
private static final String[] LABELS = {
"1 Bolt",
"2 Bulb",
"3 Panel"
};
private static final String[] SLEEVE_LABELS = {
"1 Black",
"2 White",
"3 Grey"
};
/*
* IMPORTANT: You need to obtain your own license key to use Vuforia. The string below with which
* 'parameters.vuforiaLicenseKey' is initialized is for illustration only, and will not function.
* A Vuforia 'Development' license key, can be obtained free of charge from the Vuforia developer
* web site at https://developer.vuforia.com/license-manager.
*
* Vuforia license keys are always 380 characters long, and look as if they contain mostly
* random data. As an example, here is a example of a fragment of a valid key:
* ... yIgIzTqZ4mWjk9wd3cZO9T1axEqzuhxoGlfOOI2dRzKS4T0hQ8kT ...
* Once you've obtained a license key, copy the string from the Vuforia web site
* and paste it in to your code on the next line, between the double quotes.
*/
private static final String VUFORIA_KEY =
"AY+9b5H/////AAABmdP4VHcJckRZm8RJLoHJr6ZCdCwkvYa4e33vyEGuyyl/foBfTYRNT52OO+pJ+FP60SP1HncEL5fgHmD3lbe5XWqlqUt3a6y5hAXpuEDutdVo/n77+mI58Af9ZaBvv9cD2+eXKvwZrFDAEmgZ/+I4OWglTyO2u+zJSNWzA2dLEzM0sPCECY6wR3ytsbff21SAY1MBmVGVjFiAumcc4bdOapJRqXoKHywtduws9uCC3piJGMCqPZmqBTUOnR7myumXyZZWL4TQKfYkcsEKrrlReY0iOgdbTxvDrriljP/FqcoY9UFGenaT6oZ3+/DdfWE+fiarCSzoUdJy+h2BkamY8K4ehsk/bSKG0+qbC8IrQFUl";
/**
* {@link #vuforia} is the variable we will use to store our instance of the Vuforia
* localization engine.
*/
private VuforiaLocalizer vuforia;
/**
* {@link #tfod} is the variable we will use to store our instance of the TensorFlow Object
* Detection engine.
*/
private TFObjectDetector tfod;
@Override
public void runOpMode() {
// The TFObjectDetector uses the camera frames from the VuforiaLocalizer, so we create that
// first.
initVuforia();
initTfod();
/**
* Activate TensorFlow Object Detection before we wait for the start command.
* Do it here so that the Camera Stream window will have the TensorFlow annotations visible.
**/
if (tfod != null) {
tfod.activate();
// The TensorFlow software will scale the input images from the camera to a lower resolution.
// This can result in lower detection accuracy at longer distances (> 55cm or 22").
// If your target is at distance greater than 50 cm (20") you can increase the magnification value
// to artificially zoom in to the center of image. For best results, the "aspectRatio" argument
// should be set to the value of the images used to create the TensorFlow Object Detection model
// (typically 16/9).
tfod.setZoom(1.0, 16.0/9.0);
}
/** Wait for the game to begin */
telemetry.addData(">", "Press Play to start op mode");
telemetry.update();
waitForStart();
if (opModeIsActive()) {
robot.frontLeftDrive.setTargetPosition(0);
while (opModeIsActive()) {
if (tfod != null) {
// getUpdatedRecognitions() will return null if no new information is available since
// the last time that call was made.
List<Recognition> updatedRecognitions = tfod.getUpdatedRecognitions();
if (updatedRecognitions != null) {
telemetry.addData("# Objects Detected", updatedRecognitions.size());
// step through the list of recognitions and display image position/size information for each one
// Note: "Image number" refers to the randomized image orientation/number
for (Recognition recognition : updatedRecognitions) {
double col = (recognition.getLeft() + recognition.getRight()) / 2 ;
double row = (recognition.getTop() + recognition.getBottom()) / 2 ;
double width = Math.abs(recognition.getRight() - recognition.getLeft()) ;
double height = Math.abs(recognition.getTop() - recognition.getBottom()) ;
telemetry.addData(""," ");
telemetry.addData("Image", "%s (%.0f %% Conf.)", recognition.getLabel(), recognition.getConfidence() * 100 );
telemetry.addData("- Position (Row/Col)","%.0f / %.0f", row, col);
telemetry.addData("- Size (Width/Height)","%.0f / %.0f", width, height);
//Check Sleeve Image
if(recognition.getLabel() == SLEEVE_LABELS[0])
{
telemetry.addData("Sleeve Side: ", "[\u2b1b]");
// if(robot.frontLeftDrive.getCurrentPosition() < (int) (15 * kInchesPerEncoderTick))
// drive.swerve(0.0, 0.0, 0.5);
// else if(robot.frontLeftDrive.getCurrentPosition() < (int) (30 * kInchesPerEncoderTick))
// drive.swerve(0.0, 0.5, 0.0);
}
else if(recognition.getLabel() == SLEEVE_LABELS[1]){
telemetry.addData("Sleeve Side: ", "[\u2b1c]");
// if(robot.frontLeftDrive.getCurrentPosition() < (int) (15 * kInchesPerEncoderTick))
// drive.swerve(0.0, 0.0, 0.5);
}
else if(recognition.getLabel() == SLEEVE_LABELS[2])
{
telemetry.addData("Sleeve Side: ", "[\u1f301]");
// if(robot.frontLeftDrive.getCurrentPosition() < (int) (15 * kInchesPerEncoderTick))
// drive.swerve(0.0, 0.0, 0.5);
// else if(robot.frontLeftDrive.getCurrentPosition() < (int) (430 * kInchesPerEncoderTick))
// drive.swerve(0.0, -0.5, 0.0);
}
}
telemetry.update();
}
}
}
}
}
/**
* Initialize the Vuforia localization engine.
*/
private void initVuforia() {
/*
* Configure Vuforia by creating a Parameter object, and passing it to the Vuforia engine.
*/
VuforiaLocalizer.Parameters parameters = new VuforiaLocalizer.Parameters();
parameters.vuforiaLicenseKey = VUFORIA_KEY;
parameters.cameraDirection = CameraDirection.BACK;
// Instantiate the Vuforia engine
vuforia = ClassFactory.getInstance().createVuforia(parameters);
}
/**
* Initialize the TensorFlow Object Detection engine.
*/
private void initTfod() {
int tfodMonitorViewId = hardwareMap.appContext.getResources().getIdentifier(
"tfodMonitorViewId", "id", hardwareMap.appContext.getPackageName());
TFObjectDetector.Parameters tfodParameters = new TFObjectDetector.Parameters(tfodMonitorViewId);
tfodParameters.minResultConfidence = 0.75f;
tfodParameters.isModelTensorFlow2 = true;
tfodParameters.inputSize = 300;
tfod = ClassFactory.getInstance().createTFObjectDetector(tfodParameters, vuforia);
// Use loadModelFromAsset() if the TF Model is built in as an asset by Android Studio
// Use loadModelFromFile() if you have downloaded a custom team model to the Robot Controller's FLASH.
tfod.loadModelFromAsset(TFOD_MODEL_ASSET, LABELS);
tfod.loadModelFromFile(TFOD_MODEL_FILE, SLEEVE_LABELS);
}
}