-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate.py
31 lines (26 loc) · 964 Bytes
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
# Importing Libraries
import pandas as pd
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
from joblib import dump, load
# Loading DataSet
df = pd.read_csv('datasets/forecast.csv')
states = list(set(df['State'].to_list()))
states.sort()
for state in states:
# Preparing Data For Single State
one_state = df[df['State'] == state]
X = one_state.drop(['Unique Code', 'State', 'Cases Reported'], axis=1)
y = one_state['Cases Reported']
# With Complete Data
final_model = XGBRegressor()
final_model.fit(X.values, y.values)
predictions = final_model.predict(X.values)
# Exporting and Importing.
path = f'models/{state}_xgboost.joblib'
dump(final_model, path)
loaded_model = load(path)
# Testing on New Input
sample_input = [[2022, 90000000, 60000000, 57000000, 59000000]]
result = loaded_model.predict(sample_input)
print(result[0])