-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwebservice.py
863 lines (725 loc) · 37.5 KB
/
webservice.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
# Put this first so we can be sure that there are no calls that subvert
# this in other includes.
import matplotlib
matplotlib.use( "Agg" )
# matplotlib.rc('font', **{'family': 'serif', 'serif': ['Computer Modern']})
# matplotlib.rc('text', usetex=True) # Need LaTeX in Dockerfile
from matplotlib import pyplot
import sys
import traceback
import io
import re
import math
import json
import yaml
import pathlib
import logging
import random
import numpy
import pandas
import flask
import flask.views
from astropy.io import fits
import astropy.table
workdir = pathlib.Path( __name__ ).resolve().parent
# ======================================================================
class BaseView(flask.views.View):
def __init__( self, *args, **kwargs ):
super().__init__( *args, **kwargs )
def argstr_to_args( self, argstr ):
"""Parse argstr as a bunch of /kw=val to a dictionary, update with requesty body if it's json."""
kwargs = {}
if argstr is not None:
for arg in argstr.split("/"):
match = re.search( '^(?P<k>[^=]+)=(?P<v>.*)$', arg )
if match is None:
sys.stderr.write( f"error parsing url argument {arg}, must be key=value" )
return f'error parsing url argument {arg}, must be key=value', 500
kwargs[ match.group('k') ] = match.group('v')
if flask.request.is_json:
kwargs.update( flask.request.json )
return kwargs
def readjson( self, collection, which ):
f = pathlib.Path( f"/data/{collection}_{which}.json" )
if not f.is_file():
raise Exception( f'No {which} file for {collection}' )
with open( f ) as ifp:
jsontext = ifp.read()
return jsontext
def returnjson( self, collection, which ):
jsontext = self.readjson( collection, which )
response = flask.make_response( jsontext )
response.headers['Content-Type'] = 'application/json'
return response
# ======================================================================
class MainPage(BaseView):
def dispatch_request( self ):
return flask.render_template( 'snana-summary-root.html' )
# ======================================================================
class Collections(BaseView):
def dispatch_request( self ):
d = pathlib.Path( "/data" )
jsonlist = list( d.glob( '*surveys.json' ) )
jsonlist = [ str(i.name).replace( '_surveys.json', '' ) for i in jsonlist ]
jsonlist.sort()
return { 'status': 'ok',
'collections': jsonlist }
# ======================================================================
class SurveyInfo(BaseView):
def dispatch_request( self, collection ):
return self.returnjson( collection, 'surveyinfo' )
class InstrInfo(BaseView):
def dispatch_request( self, collection ):
return self.returnjson( collection, 'instrinfo' )
class AnalysisInfo(BaseView):
def dispatch_request( self, collection ):
return self.returnjson( collection, 'analysisinfo' )
class Tiers(BaseView):
def dispatch_request( self, collection ):
return self.returnjson( colletion, 'tiers' )
class Surveys(BaseView):
def dispatch_request( self, collection ):
return self.returnjson( collection, 'surveys' )
# ======================================================================
class SummaryData(BaseView):
def dispatch_request( self, collection ):
try:
si = self.readjson( collection, 'surveyinfo' )
ii = self.readjson( collection, 'instrinfo' )
ai = self.readjson( collection, 'analysisinfo' )
t = self.readjson( collection, 'tiers' )
s = self.readjson( collection, 'surveys' )
except Exception as e:
return str(e), 500
response = flask.make_response( f'{{"status": "ok", "surveyinfo": {si}, "instrinfo": {ii}, '
f'"analysisinfo": {ai}, "tiers": {t}, "surveys": {s} }}' )
response.headers['Content-Type'] = 'application/json'
return response
# ======================================================================
class SNZHist(BaseView):
def dispatch_request( self, collection, sim, argstr=None ):
try:
data = { 'width': 600,
'height': 500,
'whichhist': 'zhist',
'gentype': 10,
'tier': "__ALL__"
}
data.update( self.argstr_to_args( argstr ) )
surveys = json.loads( self.readjson( collection, 'surveys' ) )
if sim not in surveys.keys():
app.logger.error( f"error, could not find survey {sim} in collection {collection}\n" )
return f'error, could not find survey {sim} in collection {collection}', 500
survey = surveys[sim]
gentypes = []
gentypemap = survey['gentypemap']
if data['gentype'] == "__ALL__":
gentypes = list( gentypemap.keys() )
elif data['gentype'] == "__ALLBUTIA__":
gentypes = [ t for t in list( gentypemap.keys() ) if t != '10' ]
else:
# gentypemap keys are strings, not integers, and I'm kind of boggled by that,
# but this is what happens when you work in a type-loosey-goosey language
gentype = str( data['gentype'] )
# nl = '\n'
# sys.stderr.write( f'gentypemap.keys() = '
# f'{nl.join( [f"{i} (type {type(i)})" for i in gentypemap.keys() ] )}\n' )
if gentype not in gentypemap.keys():
app.logger.error( f"Asked for unknown gentype {gentype}\n" )
return f"Asked for unknown gentype {gentype}", 500
gentypes = [ gentype ]
histdata = None
if data['whichhist'] == 'zhist':
histdata = survey['zhist']
elif data['whichhist'] == 'snrmaxzhist':
histdata = survey['snrmaxzhist']
elif data['whichhist'] == 'snrmax2zhist':
histdata = survey['snrmax2zhist']
elif data['whichhist'] == 'snrmax3zhist':
histdata = survey['snrmax3zhist']
else:
app.logger.error( f'Unknown snrmax {whichhist}, must be one of '
f'(zhist,snrmaxzhist,snrmax2zhist,snrmax3zhist)\n' )
return f'Unknown snrmax {snrmax}', 500
tiers = []
if data['tier'] == '__ALL__':
tiers = []
for t in histdata['tier']:
if t not in tiers:
tiers.append( t )
else:
if data['tier'] not in histdata['tier']:
return f'Unknown tier {data["tier"]}', 500
tiers = [ data['tier'] ]
if ( len(tiers) < 1 ) or ( len(gentypes) < 1 ):
return f'Ended up with {len(tiers)} tiers and {len(gentypes)}; must have at least 1 of both'
nbars = len( tiers ) * len( gentypes )
dpi = 72
# TODO : types. gentypemap, gentype, gentypes, blah. int or str?
fig = pyplot.figure( figsize=(data['width']/dpi, data['height']/dpi), dpi=dpi, tight_layout=True )
ax = fig.add_subplot( 1, 1, 1 )
# dz = histdata['zCMB'][1] - histdata['zCMB'][0] # this is wrong
dz = 0.1 # TODO NOT HARDCODE
totwid = 0.90
onewid = totwid * dz / nbars
offset = 0.
# sys.stderr.write( f"histdata.keys() = {histdata.keys()}\n" )
# sys.stderr.write( f"zcmb: {histdata['zCMB']}\n"
# f"n: {histdata['n']}\n"
# f"tier: {histdata['tier']}\n"
# f"gentype: {histdata['gentype']}\n" )
# sys.stderr.write( f"histdata['tier'][0]=='DEEP' = {histdata['tier'][0]=='DEEP'}\n" )
# sys.stderr.write( f"histdata['gentype'][0]==10 = {histdata['gentype'][0]==10}\n" )
histzcmb = numpy.array( histdata['zCMB'] )
histn = numpy.array( histdata['n'] )
histtier = numpy.array( histdata['tier'] )
histtype = numpy.array( histdata['gentype' ] )
for gentype in gentypes:
gentype = int(gentype)
for tier in tiers:
x = histzcmb[ ( histtier == tier ) & ( histtype == gentype ) ]
y = histn[ ( histtier == tier ) & ( histtype == gentype ) ]
ax.bar( x + offset, height=y, width=onewid, align='edge',
label=f'{tier} {gentypemap[str(gentype)]} ({y.sum()})' )
offset += totwid * dz / nbars
ax.legend( fontsize=12 )
ax.tick_params( "both", labelsize=12 )
ax.set_xlabel( r'z_CMB', fontsize=16 )
ax.set_ylabel( r'n Roman-discovered objects', fontsize=16 )
ax.set_title( f'{sim} ; FoM_stat = {surveys[sim]["muopt"][0]["FoM_stat"]:.1f}', fontsize=16 )
bio = io.BytesIO()
fig.savefig( bio, format='svg' )
pyplot.close( fig )
response = flask.make_response( bio.getvalue() )
# response.headers['Content-Type'] = 'image/png'
response.headers['Content-Type'] = 'image/svg+xml'
return response
except Exception as e:
app.logger.exception( e )
return flask.abort( 500 )
# ======================================================================
class SpecHist(BaseView):
def dispatch_request( self, which, collection, sim, strategy, argstr=None ):
try:
data = { 'width': 600,
'height': 500,
'gentype': 10,
'tier': "__ALL__",
'zbin': None,
'tbin': None,
'magbin': None,
'snrbin': None,
'band': 'J',
'tframe': 'obs'
}
data.update( self.argstr_to_args( argstr ) )
if which not in [ 'mag', 'snr', 'z', 'rest_phase_z' ]:
return f'which must be one of mag, snr, z, or rest_phase_z', 500
if data['tframe'] == 'rest':
data['banddf'] = f"{data['band']}_restframe"
elif data['tframe'] == 'obs':
data['banddf'] = data['band']
else:
return f'tframe must be rest or obs', 500
surveys = json.loads( self.readjson( collection, 'surveys' ) )
if sim not in surveys.keys():
sys.stderr.write( f"error, could not find survey {sim} in collection {collection}\n" )
return f"error, could not find survey {sim} in collection {collection}", 500
survey = surveys[sim]
if ( 'spechists' not in surveys[sim] ) or ( len(surveys[sim]['spechists']) == 0 ):
return f"Survey doesn't have prism info.", 500
data['gentypemap'] = survey['gentypemap']
spechists = survey['spechists']
if ( strategy < 0 ) or ( strategy >= spechists['nspecstrategies'] ):
return f"There are {spechists['nspecstrategies']} spectrum stragies; {strategy} is out of range", 500
if data['tbin'] is None:
data['tbin'] = int( -spechists['tobsmin'] / spechists['deltat'] + 0.5 )
if data['snrbin'] is None:
data['snrbin'] = int( ( 10. - spechists['snirmin'] ) / spechists['deltasnr'] + 0.5 )
if data['zbin'] is None:
data['zbin'] = 5
if data['magbin'] is None:
data['magbin'] = 5
data['tbin'] = int( data['tbin'] )
data['t'] = spechists['tobsmin'] + data['tbin'] * spechists['deltat']
data['snrbin'] = int( data['snrbin'] )
data['snr'] = spechists['snrmin'] + data['snrbin'] * spechists['deltasnr']
if ( data['zbin'] == '__all__' ):
data['z'] = '(all)';
else:
data['zbin'] = int( data['zbin'] )
data['z'] = spechists['zmin'] + data['zbin'] * spechists['deltaz']
if ( data['magbin'] == '__all__' ):
data['mag'] = '(all)'
else:
data['magbin'] = int( data['magbin'] )
data['mag'] = spechists['mmin'] + data['magbin'] * spechists['deltam']
if data['tier'] == '__ALL__':
data['tier'] = list( spechists['spectrumhists'][strategy].keys() )
else:
data['tier'] = [ data['tier'] ]
# This will be used in spechist_*
data['deltaz'] = spechists['deltaz']
data['deltat'] = spechists['deltat']
data['deltasnr'] = spechists['deltasnr']
data['deltam'] = spechists['deltam']
# Gentype counting
gentypes = []
for tier in data['tier']:
df = pandas.DataFrame( spechists['spectrumhists'][strategy][tier][data['banddf']] )
if ( data['gentype'] == '__ALL__' ) or ( data['gentype'] == '__ALLBUTIA__' ):
for gentype in df['GENTYPE'].unique():
if gentype not in gentypes:
if ( data['gentype'] == '__ALL__' ) or ( gentype != 10 ):
gentypes.append( gentype )
if len(gentypes) == 0:
gentype = data['gentype']
if str(gentype) not in data['gentypemap'].keys():
return f"Asked for unknown gentype {gentype}", 500
gentypes = [ gentype ]
if which == 'mag':
return self.spechist_mag( sim, survey, spechists['spectrumhists'][strategy], gentypes,
spechists['mmin'], spechists['mmax'], spechists['deltam'],
data, argstr )
elif which == "snr":
return self.spechist_snr( sim, survey, spechists['spectrumhists'][strategy], gentypes,
spechists['snrmin'], spechists['snrmax'], spechists['deltasnr'],
data, argstr )
elif which == "z":
return self.spechist_z( sim, survey, spechists['spectrumhists'][strategy], gentypes,
spechists['zmin'], spechists['zmax'], spechists['deltaz'],
data, argstr )
elif which == "rest_phase_z":
return self.heatmap_restphase_z( sim, survey, spechists['spectrumhists'][strategy], gentypes,
spechists['zmin'], spechists['zmax'], spechists['deltaz'],
spechists['tobsmin'], spechists['tobsmax'], spechists['deltat'],
data, argstr )
else:
return "Error 27B/6", 500
except Exception as ex:
sys.stderr.write( f"Exception: {ex}\n" )
sys.stderr.write( f"{traceback.format_exc()}\n" )
return flask.abort( 500 )
def plothist( self, sim, dfs, minval, maxval, delta, binstr, gentypes, survey, data, extra_title="", x_title="",
gtonmaxxtick=None ):
nbars = len( data['tier'] ) * len( gentypes )
dpi = 72
fig = pyplot.figure( figsize=(data['width']/dpi, data['height']/dpi), dpi=dpi, tight_layout=True )
ax = fig.add_subplot( 1, 1, 1 )
totwid = 0.90
onewid = totwid * delta / nbars
offset = 0.
for gentype in gentypes:
gentype = int( gentype )
for tier in data['tier']:
df = dfs[tier]
df = df[ df['GENTYPE'] == gentype ]
x = minval + df[binstr] * delta
y = df['n']
ax.bar( x + offset, height=y, width=onewid, align='edge',
label=f'{tier} {data["gentypemap"][str(gentype)]}' )
offset += totwid * delta / nbars
ax.legend( fontsize=12 )
ax.tick_params( "both", labelsize=12 )
ax.set_xlim( minval, maxval )
ax.set_xlabel( x_title, fontsize=16 )
ax.set_ylabel( r'N', fontsize=16 )
ax.set_title( f'{sim} ; FoM_stat = {survey["muopt"][0]["FoM_stat"]:.1f}\nband {data["band"]}{extra_title}',
fontsize=16 )
if gtonmaxxtick is not None:
xticklabels = [ item.get_text() for item in ax.get_xticklabels() ]
for i in range(len(xticklabels)):
if float( xticklabels[i] ) == gtonmaxxtick:
xticklabels[i] = f"≥{xticklabels[i]}"
ax.set_xticklabels( xticklabels )
bio = io.BytesIO()
fig.savefig( bio, format='svg' )
pyplot.close( fig )
response = flask.make_response( bio.getvalue() )
response.headers['Content-Type'] = 'image/svg+xml'
return response
def spechist_z( self, sim, survey, spechists, gentypes, zmin, zmax, dz, data, argstr ):
# Pandafication
dfs = {}
tbin = 'trestbin' if data['tframe'] == 'rest' else 'tbin'
for tier in data['tier']:
df = pandas.DataFrame( spechists[tier][data['banddf']] )
df = df.loc[ ( df[tbin] == data['tbin'] ) & ( df['snrbin'] >= data['snrbin'] ),
[ 'GENTYPE', 'zbin', 'snrbin', 'n' ] ]
df = df.groupby( [ 'GENTYPE', 'zbin' ] ).sum()[ 'n' ].reset_index()
dfs[tier] = df
extra_title = ""
for tier in spechists.keys():
extra_title += f", t_exp({tier})={spechists[tier]['texpose']}s"
extra_title += f"\nt_{data['tframe']}=[{data['t']:.0f},{data['t']+data['deltat']:.0f}) d, "
extra_title += f"S/N≥{data['snr']:.0f}"
return self.plothist( sim, dfs, zmin, zmax, dz, 'zbin', gentypes, survey, data,
extra_title=extra_title, x_title="z (heliocentric)" )
def spechist_mag( self, sim, survey, spechists, gentypes, mmin, mmax, dm, data, argstr ):
dfs = {}
tbin = 'trestbin' if data['tframe'] == 'rest' else 'tbin'
for tier in data['tier']:
df = pandas.DataFrame( spechists[tier][data['banddf']] )
df = df.loc[ df[tbin] == data['tbin'], [ 'GENTYPE', 'magbin', 'zbin', 'n' ] ]
if data['zbin'] != '__all__':
df = df.loc[ df['zbin'] == data['zbin'], : ]
df = df.groupby( [ 'GENTYPE', 'magbin' ] ).sum()[ 'n' ].reset_index()
dfs[tier] = df
extra_title = ""
for tier in spechists.keys():
extra_title += f", t_exp({tier})={spechists[tier]['texpose']}s"
extra_title += f"\nt_{data['tframe']}=[{data['t']:.0f},{data['t']+data['deltat']:.0f}) d"
if data['zbin'] != '__all__':
extra_title += f", z_hel=[{data['z']:.0f},{data['z']+data['deltaz']:.0f})"
else:
extra_title += f", all z"
return self.plothist( sim, dfs, mmin, mmax, dm, 'magbin', gentypes, survey, data,
extra_title=extra_title, x_title='observed magnitude' )
def spechist_snr( self, sim, survey, spechists, gentypes, snrmin, snrmax, dsnr, data, argstr ):
dfs = {}
tbin = 'trestbin' if data['tframe'] == 'rest' else 'tbin'
for tier in data['tier']:
df = pandas.DataFrame( spechists[tier][data['banddf']] )
df = df.loc[ df[tbin] == data['tbin'], [ 'GENTYPE', 'snrbin', 'zbin', 'n' ] ]
if data['zbin'] != '__all__':
df = df.loc[ df['zbin'] == data['zbin'], : ]
df = df.groupby( [ 'GENTYPE', 'snrbin' ] ).sum()[ 'n' ].reset_index()
dfs[tier] = df
extra_title = ""
for tier in spechists.keys():
extra_title += f", t_exp({tier})={spechists[tier]['texpose']}s"
extra_title += f"\nt_{data['tframe']}=[{data['t']:.0f},{data['t']+data['deltat']:.0f}) d"
if data['zbin'] != '__all__':
extra_title += f", z_hel=[{data['z']:.0f},{data['z']+data['deltaz']:.0f})"
else:
extra_title += f", all z"
return self.plothist( sim, dfs, snrmin, snrmax+dsnr, dsnr, 'snrbin', gentypes, survey, data,
extra_title=extra_title, x_title=f'S/N integrated over {data["band"]}-band',
gtonmaxxtick=snrmax )
def heatmap_restphase_z( self, sim, survey, spechists, gentypes, zmin, zmax, dz, tmin, tmax, dt, data, argstr ):
masterdf = None
tbin = 'trestbin'
# In this case, we're not going to try to represent different tiers and gentypes, but
# just sum together all the included tiers and gentypes.
for tier in data['tier']:
df = pandas.DataFrame( spechists[tier][f"{data['band']}_restframe"] )
df = df.loc[ df['snrbin'] >= data['snrbin'], [ 'GENTYPE', 'zbin', tbin, 'n' ] ]
df = ( df.groupby( [ 'GENTYPE', 'zbin', tbin ] ).sum()[ 'n' ]
.reset_index().set_index( ['zbin', tbin ] ) )
gtsumdf = None
for gentype in gentypes:
thisgtdf = df.loc[ df['GENTYPE'] == int(gentype), ['n'] ]
if gtsumdf is None:
gtsumdf = thisgtdf
else:
gtsumdf = gtsumdf.add( thisgtdf, fill_value=0 )
if masterdf is None:
masterdf = gtsumdf
else:
masterdf = masterdf.add( gtsumdf, fill_value=0 )
# Make sure that the index values are continuous, so that imshow will be meaningful
zbinvals = masterdf.index.get_level_values( level='zbin' ).values
zbinmin = zbinvals.min()
zbinmax = zbinvals.max()
tbinvals = masterdf.index.get_level_values( level=tbin ).values
tbinmin = tbinvals.min()
tbinmax = tbinvals.max()
zbinvals = []
for z in range( zbinmin, zbinmax+1 ):
zbinvals.extend( [z] * (tbinmax-tbinmin+1) )
tbinvals = list( range( tbinmin, tbinmax+1 ) ) * (zbinmax-zbinmin+1 )
template = pandas.DataFrame( { 'zbin': zbinvals, tbin: tbinvals, 'n': [0]*len(tbinvals) } )
template.set_index( [ 'zbin', tbin ], inplace=True )
masterdf = masterdf.reindex_like( template )
masterdf[ masterdf.isna() ] = 0
grid = masterdf.unstack( level=tbin, fill_value=0 )
zlo = zmin + zbinmin * dz
zhi = zmin + (zbinmax+1) * dz
tlo = tmin + tbinmin * dt
thi = tmin + (tbinmax+1) * dt
# OK, plot
dpi = 72
fig = pyplot.figure( figsize=(data['width']/dpi, data['height']/dpi), dpi=dpi, tight_layout=True )
ax = fig.add_subplot( 1, 1, 1 )
img = ax.imshow( grid['n'].values,
aspect='auto',
origin='lower',
extent=( tlo, thi, zlo, zhi ) )
ax.figure.colorbar( img, ax=ax )
ax.tick_params( "both", labelsize=12 )
ax.set_ylabel( 'z', fontsize=16 )
ax.set_xlabel( 't_rest rel. max (d)', fontsize=16 )
ax.set_title( f'{sim} ; FoM_stat = {survey["muopt"][0]["FoM_stat"]:.1f}\n'
f'band={data["band"]}; S/N≥{data["snr"]:.0f}', fontsize=16 )
bio = io.BytesIO()
fig.savefig( bio, format='svg' )
pyplot.close( fig )
response = flask.make_response( bio.getvalue() )
response.headers['Content-Type'] = 'image/svg+xml'
return response
# ======================================================================
class RandomObject:
def find_random_object( self, collection, sim, gentype, z, dz, tier=None, specstrat=None, spect=0., specdt=1.,
tframe='rest', need_spec=False ):
retval = {}
gentype = int(gentype)
z = float(z)
dz = float(dz)
specstrat = None if specstrat is None else int(specstrat)
# TODO : update this to when there is more than one collection sim dir
# HACK ALERT : update this when collection names are more coherent
# app.logger.debug( f"gentype={gentype}, z={z}, dz={dz}" )
simcomps = sim.strip().split()
app.logger.debug( f"collection={collection}, sim={sim}" )
app.logger.debug( f"collection={collection}, sim={sim}, simcomps[1]={simcomps[1]}" )
subdir = pathlib.Path( "/snana_sim" ) / f'ROMAN_{collection}_DATA-{simcomps[1]}'
g = [ i for i in subdir.glob( "*.README" ) ]
if len(g) == 0:
app.logger.error( f"Couldn't find a *.README file in {subdir}" )
raise RuntimeError( "Error parsing snana output data" )
if len(g) > 1:
app.logger.error( f"Found more than one *.README file in {subdir}" )
raise RuntimeError( "Error parsing snana output data" )
with open( g[0] ) as ifp:
blob = yaml.safe_load( ifp.read() )
model = None
for key in blob['DOCUMENTATION'].keys():
if key[0:11] == "INPUT_KEYS_":
if blob['DOCUMENTATION'][key]['GENTYPE'] == gentype:
model = key[11:]
app.logger.debug( f"Found gentype {gentype} as model {model}" )
if model is None:
app.logger.error( f"Couldn't find model for gentype {gentype}" )
raise RuntimeError( "Couldn't find snana files for type" )
# If tier is not None, then we have to read the DUMP file
if tier is not None:
g = [ i for i in subdir.glob( f"*DUMP*" ) ]
if len(g) != 1:
raise RuntimeError( "There are {len(g)} DUMP files, expected exactly 1." )
dump = pandas.read_csv( g[0], sep='\s+', comment='#' )
dump.set_index( 'CID', inplace=True )
# If need_spec is True then we need to read the cache of spectrum CIDs
if need_spec:
app.logger.debug( f"sim={sim}" )
spectiercids = json.loads( self.readjson( collection, 'spectiercids' ) )
spectiercids = spectiercids[ sim ]
# TODO : assuming gzipped, fix that
g = [ i for i in subdir.glob( f"ROMAN_{model}-*_HEAD.FITS.gz" ) ]
random.shuffle( g )
if need_spec and (specstrat is not None):
instrat = set()
if tier is not None:
tierstosearch = [ tier ]
else:
tierstosearch = list( spectiercids.keys() )
app.logger.debug( f"tierstosearch={tierstosearch}, specstrat={specstrat}" )
for searchtier in tierstosearch:
# I hope these cids are integers...
instrat = instrat.union( set( spectiercids[searchtier][specstrat] ) )
instrat = numpy.array( list(instrat), dtype=numpy.int64 )
app.logger.debug( f"instrat = {instrat}" )
found = False
for headfile in g:
app.logger.debug( f"Searching file {headfile}" )
photfile = headfile.parent / headfile.name.replace( '_HEAD.FITS.gz', '_PHOT.FITS.gz' )
specfile = headfile.parent / headfile.name.replace( '_HEAD.FITS.gz', '_SPEC.FITS' )
tab = astropy.table.Table.read( headfile )
tab['SNID'] = tab['SNID'].astype( numpy.int64 )
spechead = None
if need_spec:
specfname = headfile.name.replace( "_HEAD.FITS.gz", "_SPEC.FITS" )
app.logger.debug( f"Reading spectrum file {specfname}" )
with fits.open( headfile.parent / specfname, memmap=True ) as sf:
spechead = astropy.table.Table( sf[1].data )
spechead['SNID'] = spechead['SNID'].astype( numpy.int64 )
app.logger.debug( f"spectiercids.keys()={spectiercids.keys()}" )
if specstrat is not None:
tab = tab[ [ i in instrat for i in tab['SNID'] ] ]
app.logger.debug( f"After cutting, len(tab) = {len(tab)}" )
rightz = tab[ ( tab['SIM_REDSHIFT_CMB'] >= z - dz ) & ( tab['SIM_REDSHIFT_CMB'] <= z + dz ) ]
app.logger.debug( f"len(rightz)={len(rightz)}" )
if len(rightz) == 0:
continue
dexen = list( range( 0, len(rightz) ) )
random.shuffle( dexen )
for dex in dexen:
if rightz[dex]['SIM_GENTYPE'] != gentype:
app.logger.error( f"gentype mismatch error" )
raise RuntimeError( "Gentype from HEAD file didn't match expected" )
if tier is not None:
# Make sure the SN is from the right tier
if dump.loc[ rightz[dex]['SNID'], 'FIELD' ] != tier:
continue
if not need_spec:
found = True
break
else:
objspecs = spechead[ spechead['SNID'] == rightz[dex]['SNID'] ]
if len( objspecs ) > 0:
dts = objspecs['MJD'] - rightz[dex]['SIM_PEAKMJD']
if tframe == "rest":
dts /= ( 1. + rightz[dex]['SIM_REDSHIFT_HELIO'] )
gooddts = numpy.where( ( dts <= spect + specdt ) & ( dts >= ( spect - specdt ) ) )[0]
if len( gooddts ) > 0:
random.shuffle( gooddts )
spechead = objspecs[ gooddts[0] ]
found = True
break
if found:
retval = {
'headfile': headfile,
'photfile': photfile,
'tier': 'Any' if tier is None else tier,
'snid': int( rightz[dex]['SNID'] ),
'ptrobs_min': int( rightz[dex]['PTROBS_MIN'] ) - 1,
'ptrobs_max': int( rightz[dex]['PTROBS_MAX'] ),
'snz': float( rightz[dex]['SIM_REDSHIFT_CMB'] ),
'mwebv': float( rightz[dex]['SIM_MWEBV'] ),
'av': float( rightz[dex]['SIM_AV'] ),
'rv': float( rightz[dex]['SIM_RV'] ),
}
if need_spec:
retval.update( {
'specfile': specfile,
'specstrat': 'Any' if specstrat is None else specstrat,
'spec_texp': float( spechead['Texpose'] ),
'specdt': float(spechead['MJD'] - rightz[dex]['SIM_PEAKMJD']),
'specdtrest': float( ( spechead['MJD'] - rightz[dex]['SIM_PEAKMJD'] ) /
( 1. + rightz[dex]['SIM_REDSHIFT_HELIO'] ) ),
'specnbin_lam': float( spechead['NBIN_LAM'] ),
'spechost_contam': float( spechead['SCALE_HOST_CONTAM'] ),
'ptrspec_min': int( spechead['PTRSPEC_MIN'] ) - 1,
'ptrspec_max': int( spechead['PTRSPEC_MAX'] ),
} )
if found:
break
return retval
# ======================================================================
class RandomLTCV(BaseView, RandomObject):
def dispatch_request( self, collection, sim, gentype, z, dz, tier=None ):
try:
gentype = int(gentype)
z = float(z)
dz = float(dz)
retval = self.find_random_object( collection, sim, gentype, z, dz, tier=tier )
if len( retval ) == 0:
raise RuntimeError( f"Failed to find an object of type {gentype} at z {z}±{dz}"
f"in {'any tier' if tier is None else f'tier {tier}'}" )
retval['status'] = 'ok'
retval['ltcv'] = {}
retval['zp'] = 27.5 # Standard SNANA zeropoint
app.logger.error( f"Opening photfile {retval['photfile'].name}" )
with fits.open( retval['photfile'] ) as f:
photdata = f[1].data[ retval['ptrobs_min'] : retval['ptrobs_max'] ]
app.logger.error( f"photdata columns: {photdata.columns}" )
for band in numpy.unique( photdata['BAND'] ):
banddata = photdata[ photdata['BAND'] == band ]
retval['ltcv'][band] = { 'mjd': [ float(i) for i in banddata['MJD'] ],
'flux': [ float(i) for i in banddata['FLUXCAL'] ],
'dflux': [ float(i) for i in banddata['FLUXCALERR'] ] }
# Clean up some fields from retval
fields = [ 'headfile', 'photfile', 'ptrobs_min', 'ptrobs_max' ]
for field in fields:
try:
del retval[ field ]
except KeyError as ex:
pass
return retval
except Exception as ex:
app.logger.exception( ex )
return { 'status': 'error', 'error': str(ex) }
# ======================================================================
class RandomSpectrum(BaseView, RandomObject):
def dispatch_request( self, collection, sim, gentype, z, dz, t, dt, argstr=None ):
data = { 'tframe': 'rest',
'tier': None,
'specstrat': None }
data.update( self.argstr_to_args( argstr ) )
try:
gentype = int(gentype)
z = float(z)
dz = float(dz)
t = float(t)
dt = float(dt)
isrest = False
if data['tframe'] == 'rest':
isrest = True
elif data['tframe'] != 'obs':
return f"Unknown tframe {data['tframe']}", 500
retval = self.find_random_object( collection, sim, gentype, z, dz,
tier=data['tier'], specstrat=data['specstrat'],
spect=t, specdt=dt, tframe=data['tframe'], need_spec=True )
if len( retval ) == 0:
tierstr = 'any tier' if data['tier'] is None else f'tier {data["tier"]}'
specstratstr = ( 'any spectrum strategy' if data['specstrat'] is None
else f'spectrum strategy {data["specstrat"]}' )
raise RuntimeError( f"Failed to find a spectrum of type {gentype} at z {z}±{dz} "
f"and t_{data['tframe']} {t}±{dt} "
f"for {tierstr} and {specstratstr}" )
retval['status'] = 'ok'
with fits.open( retval['specfile'], memmap=True ) as f:
rows = f[2].data[ retval['ptrspec_min'] : retval['ptrspec_max'] ]
retval['spectrum'] = {
'lammin': [ float(i) for i in rows['LAMMIN'] ],
'lammax': [ float(i) for i in rows['LAMMAX'] ],
'flam': [ float(i) for i in rows['FLAM']*1e20 ],
'flamerr': [ float(i) for i in rows['FLAMERR']*1e20 ],
'sim_flam': [ float(i) for i in rows['SIM_FLAM']*1e20 ],
}
# app.logger.debug( f"rows['LAMMIN']={rows['LAMMIN']} ; lammin={retval['spectrum']['lammin']}" )
# Clean up some fields from retval
fields = [ 'headfile', 'photfile', 'ptrobs_min', 'ptrobs_max', 'specfile', 'ptrspec_min', 'ptrspec_max' ]
for field in fields:
# ****
if isinstance( retval[field], pathlib.Path ):
retval[field] = str( retval[field] )
# ****
# try:
# del retval[ field ]
# except KeyError as ex:
# pass
return retval
except Exception as ex:
app.logger.exception( ex )
return { 'status': 'error', 'error': str(ex) }
# ======================================================================
app = flask.Flask( __name__, instance_relative_config=True )
# app.logger.setLevel( logging.INFO )
app.logger.setLevel( logging.DEBUG )
app.add_url_rule( "/",
view_func=MainPage.as_view("mainpage"),
strict_slashes=False )
rules = {
"/collections": Collections,
"/surveyinfo/<string:collection>": SurveyInfo,
"/instrinfo/<string:collection>": InstrInfo,
"/analysisinfo/<string:collection>": AnalysisInfo,
"/tiers/<string:collection>": Tiers,
"/surveys/<string:collection>": Surveys,
"/summarydata/<string:collection>": SummaryData,
"/snzhist/<string:collection>/<string:sim>": SNZHist,
"/snzhist/<string:collection>/<string:sim>/<path:argstr>": SNZHist,
"/spechist/<string:which>/<string:collection>/<string:sim>/<int:strategy>": SpecHist,
"/spechist/<string:which>/<string:collection>/<string:sim>/<int:strategy>/<path:argstr>": SpecHist,
"/randomltcv/<string:collection>/<string:sim>/<int:gentype>/<string:z>/<string:dz>": RandomLTCV,
"/randomltcv/<string:collection>/<string:sim>/<int:gentype>/<string:z>/<string:dz>/<string:tier>": RandomLTCV,
( "/randomspectrum/<string:collection>/<string:sim>/<int:gentype>/<string:z>/<string:dz>"
"/<string:t>/<string:dt>/<path:argstr>" ): RandomSpectrum,
}
# Dysfunctionality alert: flask routing doesn't interpret "0" or "5" as
# a float. (It thinks it's an int and an int only.)
lastname = None
for url, cls in rules.items():
match = re.search( "^/([^/]+)", url )
if match is None:
raise ValueError( f"Bad url {url}" )
name = match.group(1)
if name == lastname:
# Kind of a hack so that flask doesn't get pissy about repeated names
name += "x"
lastname = name
app.add_url_rule( url, view_func=cls.as_view(name), methods=["GET","POST"], strict_slashes=False )
# ****
# for rule in app.url_map.iter_rules():
# app.logger.debug( f"Found rule {rule}" )
# ****