forked from JayZeeDesign/inbox-manager-agent
-
Notifications
You must be signed in to change notification settings - Fork 0
/
extract_faq.py
96 lines (71 loc) · 2.94 KB
/
extract_faq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import csv
import json
from dotenv import find_dotenv, load_dotenv
from langchain.prompts import PromptTemplate
from langchain.chat_models import ChatOpenAI
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains.summarize import load_summarize_chain
load_dotenv()
llm = ChatOpenAI(temperature=0, model_name="gpt-4")
def load_csv(file_path):
# Create a list to hold dictionaries
data_list = []
# Open the CSV file and read its content
with open(file_path, 'r') as csv_file:
csv_reader = csv.DictReader(csv_file)
# For each row, append it as a dictionary to the list
for row in csv_reader:
data_list.append(row)
return data_list
def extract_faq(text_data):
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=3000,
chunk_overlap=20,
length_function = len,
is_separator_regex=False)
texts = text_splitter.split_text(text_data)
docs = text_splitter.create_documents(texts)
map_prompt = """
PAST EMAILS:
{text}
----
You are a smart AI assistant, above is some past emails from AI Jason (an AI youtuber),
your goal is to learn & extract common FAQ about AI Jason
(include both question & answer, return results in JSON):
"""
map_prompt_template = PromptTemplate(template=map_prompt, input_variables=["text"])
combine_prompt = """
The following is set of FAQ about AI Jason (an AI youtuber):
{text}
Take these and distill it into a final, consolidated array of faq,
include both question & answer (in JSON format).
array of FAQ:
"""
combine_prompt_template = PromptTemplate(template=combine_prompt, input_variables=["text"])
summary_chain = load_summarize_chain(llm=llm,
chain_type='map_reduce',
map_prompt=map_prompt_template,
combine_prompt=combine_prompt_template,
verbose=True
)
output = summary_chain.run(docs)
faqs = json.loads(output)
return faqs
def save_json_to_csv(data, file_name):
with open(file_name, mode='w', newline='', encoding='utf-8') as file:
# Get the keys (column names) from the first dictionary in the list
fieldnames = data[0].keys()
# Create a CSV dict writer object
writer = csv.DictWriter(file, fieldnames=fieldnames)
# Write the header row
writer.writeheader()
# Write the data rows
for entry in data:
writer.writerow(entry)
# Print or save the JSON data
past_emails = load_csv("email_pairs.csv")
# Extracting Jason's replies
jasons_replies = [entry["jason_reply"] for entry in past_emails]
jasons_replies_string = json.dumps(jasons_replies)
faqs = extract_faq(jasons_replies_string)
save_json_to_csv(faqs, "faq.csv")