-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcross_matrix.py
341 lines (318 loc) · 21.1 KB
/
cross_matrix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
r"""
划分训练集/验证集/测试集 比例为8:1:1
将userid和3种模态各自交叉
将3种模态之间两两交叉
"""
import os,time
import json
from tqdm import tqdm
import numpy as np
import rich.progress
from utils import pca_process
from utils import save_npy, get_userid_itemid, get_multimodal_dict
from sklearn.preprocessing import MinMaxScaler
from load_path import graph_path, matrix_path, user_embedding_path, double_modal_cross_arr, triple_modal_cross_arr, double_modal_concat_arr, triple_modal_concat_arr, tiktok, wechat, finish, like
""" adjust how much matrix will be made """
# only_vat_concat = True # 仅生成三种模态拼接的矩阵
only_vat_concat = False # 生成所有的拼接、交叉矩阵
""" add user_embedding or not"""
user_embedding_exit = True # 进行了user embedding
# user_embedding_exit = False # 完全消融掉了usesr embedding
# 特征交叉 2
def cross_array(arr_1 : np.array, arr_2 : np.array) :
result_hadamard = []
len_1, len_2 = len(arr_1[0]), len(arr_2[0])
# 将元素更长的那个用PCA进行降维 使其内部元素和较短的相同
if len_1 > len_2:
arr_1 = np.array(pca_process(arr_1, len_2))
else:
arr_2 = np.array(pca_process(arr_2, len_1))
assert len(arr_1[0]) == len(arr_2[0])
for x, y, _ in zip(arr_1, arr_2, tqdm(range(len(arr_1)))):
result_hadamard.append((x*y).tolist())
return result_hadamard
# 特征交叉 3
def cross_array_tri(arr_1 : np.array, arr_2 : np.array, arr_3 : np.array):
result_hadamard = []
len_1, len_2, len_3 = len(arr_1[0]), len(arr_2[0]), len(arr_3[0])
if min(len_1, len_2, len_3) == len_1:
arr_2 = np.array(pca_process(arr_2, len_1))
arr_3 = np.array(pca_process(arr_3, len_1))
elif min(len_1, len_2, len_3) == len_2:
arr_1 = np.array(pca_process(arr_1, len_2))
arr_3 = np.array(pca_process(arr_3, len_2))
elif min(len_1, len_2, len_3) == len_3:
arr_1 = np.array(pca_process(arr_1, len_3))
arr_2 = np.array(pca_process(arr_2, len_3))
assert len(arr_1[0]) == len(arr_2[0]) == len(arr_3[0])
for x,y,z,_ in zip(arr_1, arr_2, arr_3, tqdm(range(len(arr_1)))):
result_hadamard.append((x*y*z).tolist())
return result_hadamard
# 特征拼接 2
def concat_array(arr_1 : np.array, arr_2 : np.array):
arr = np.concatenate((arr_1, arr_2),axis = 1)
return arr.tolist()
# 特征拼接 3
def concat_array_tri(arr_1 : np.array, arr_2 : np.array , arr_3 : np.array):
arr = np.concatenate((arr_1, arr_2), axis=1)
arr = np.concatenate((arr, arr_3), axis=1)
return arr.tolist()
if __name__ == '__main__':
# 存放用于训练的矩阵
if not os.path.exists(matrix_path):
os.makedirs(matrix_path)
for dataset_tag in [wechat, tiktok]:
# 获取用户-短视频和用户-设备二分图 形式为dict 以userid为key进行索引
if not os.path.exists(graph_path):
print(f'Error: {graph_path} does not exits!')
exit(1)
# ########## wechat ##########
if dataset_tag == wechat:
user_feed, user_device = get_userid_itemid(graph_path, tag=dataset_tag)
# 获取用户的embedding
visual_embedding_file = dataset_tag+'_visual_user_embeddings.json'
acoustic_embedding_file = dataset_tag+'_acoustic_user_embeddings.json'
textual_embedding_file = dataset_tag+'_textual_user_embeddings.json'
with rich.progress.open(os.path.join(user_embedding_path, visual_embedding_file), 'r') as f:
visual_userid_embedding = json.loads(f.read())
with rich.progress.open(os.path.join(user_embedding_path, acoustic_embedding_file), 'r') as f:
acoustic_userid_embedding = json.loads(f.read())
with rich.progress.open(os.path.join(user_embedding_path, textual_embedding_file), 'r') as f:
textual_userid_embedding = json.loads(f.read())
# 获取模态信息
visual_modal_dict = get_multimodal_dict(dataset_tag+'_visual')
acoustic_modal_dict = get_multimodal_dict(dataset_tag+'_acoustic')
textual_modal_dict = get_multimodal_dict(dataset_tag+'_textual')
assert visual_modal_dict.keys() == acoustic_modal_dict.keys() == textual_modal_dict.keys()
# 将模态全部归一化, 以免交叉时有影响
visual_modal_value = list(visual_modal_dict.values())
acoustic_modal_value = list(acoustic_modal_dict.values())
textual_modal_value = list(textual_modal_dict.values())
visual_modal_value = MinMaxScaler().fit_transform(visual_modal_value) # 192
acoustic_modal_value = MinMaxScaler().fit_transform(acoustic_modal_value) # 242
textual_modal_value = MinMaxScaler().fit_transform(textual_modal_value) # 73
# PCA降维
visual_modal_value = pca_process(visual_modal_value, 128) # 128
acoustic_modal_value = pca_process(acoustic_modal_value, 128) # 128
if not only_vat_concat:
# 两两模态交叉
va_hadamard = cross_array(visual_modal_value, acoustic_modal_value) # 192
vt_hadamard = cross_array(visual_modal_value, textual_modal_value) # 73
at_hadamard = cross_array(acoustic_modal_value, textual_modal_value) # 73
# 三个模态交叉
vat_hadamard = cross_array_tri(visual_modal_value, acoustic_modal_value, textual_modal_value) # 73
# 两两模态拼接
va_concat = concat_array(visual_modal_value, acoustic_modal_value) # 256
vt_concat = concat_array(visual_modal_value, textual_modal_value) # 201
at_concat = concat_array(acoustic_modal_value, textual_modal_value) # 201
# 三个模态拼接
vat_concat = concat_array_tri(visual_modal_value, acoustic_modal_value, textual_modal_value) # 329
if not only_vat_concat:
# PCA降维
va_concat = pca_process(va_concat, 128)
vt_concat = pca_process(vt_concat, 128)
at_concat = pca_process(at_concat, 128)
vat_concat = pca_process(vat_concat, 128)
if not only_vat_concat:
assert len(va_hadamard) == len(vt_hadamard) == len(at_hadamard) == len(vat_hadamard) == len(va_concat) == len(vt_concat) == len(at_concat) == len(vat_concat)
if not only_vat_concat:
(va_hadamard_dict, vt_hadamard_dict, at_hadamard_dict, vat_hadamard_dict,
va_concat_dict, vt_concat_dict, at_concat_dict, vat_concat_dict) = ({}, {}, {}, {}, {}, {}, {}, {})
for key, va_h, vt_h, at_h, vat_h, va_c, vt_c, at_c, vat_c, _ in zip(list(visual_modal_dict.keys()),
va_hadamard, vt_hadamard, at_hadamard, vat_hadamard,
va_concat, vt_concat, at_concat, vat_concat, tqdm(range(len(va_hadamard)))):
va_hadamard_dict[key] = np.array(va_h)
vt_hadamard_dict[key] = np.array(vt_h)
at_hadamard_dict[key] = np.array(at_h)
vat_hadamard_dict[key] = np.array(vat_h)
va_concat_dict[key] = np.array(va_c)
vt_concat_dict[key] = np.array(vt_c)
at_concat_dict[key] = np.array(at_c)
vat_concat_dict[key] = np.array(vat_c)
else:
vat_concat_dict = {}
for key, vat_c, _ in zip(list(visual_modal_dict.keys()), vat_concat, tqdm(range(len(vat_concat)))):
vat_concat_dict[key] = np.array(vat_c)
if not only_vat_concat:
tag_arr = double_modal_cross_arr+triple_modal_cross_arr+double_modal_concat_arr+triple_modal_concat_arr
modal_arr = [va_hadamard_dict, vt_hadamard_dict, at_hadamard_dict, vat_hadamard_dict,
va_concat_dict, vt_concat_dict, at_concat_dict, vat_concat_dict]
else:
tag_arr = triple_modal_concat_arr
modal_arr = [vat_concat_dict]
for tag, modal_dict in zip(tag_arr, modal_arr):
save_matrix = []
cnt, user_length = 0, len(user_feed)
start = time.time()
for userid in user_feed:
for feedid_click, _ in zip(user_feed[userid], tqdm(range(len(user_feed[userid])))):
modal_and_click = modal_dict[feedid_click[0]].tolist()+[feedid_click[1]]
if tag == 'va_cross':
arr = [userid]+visual_userid_embedding[str(userid)]+acoustic_userid_embedding[str(userid)]+modal_and_click
elif tag == 'vt_cross':
arr = [userid]+visual_userid_embedding[str(userid)]+textual_userid_embedding[str(userid)]+modal_and_click
elif tag == 'at_cross':
arr = [userid]+acoustic_userid_embedding[str(userid)]+textual_userid_embedding[str(userid)]+modal_and_click
elif tag == 'vat_cross':
arr = [userid]+visual_userid_embedding[str(userid)]+acoustic_userid_embedding[str(userid)]+textual_userid_embedding[str(userid)]+modal_and_click
elif tag == 'va_concat':
arr = [userid]+visual_userid_embedding[str(userid)]+acoustic_userid_embedding[str(userid)]+modal_and_click
elif tag == 'vt_concat':
arr = [userid]+visual_userid_embedding[str(userid)]+textual_userid_embedding[str(userid)]+modal_and_click
elif tag == 'at_concat':
arr = [userid]+acoustic_userid_embedding[str(userid)]+textual_userid_embedding[str(userid)]+modal_and_click
elif tag == 'vat_concat':
# 完全消融 即用单一userid替换embedding
if not user_embedding_exit:
arr = [userid]+[userid]+modal_and_click
# 不完全消融 即改变user embedding的维度
else:
arr = [userid]+visual_userid_embedding[str(userid)]+acoustic_userid_embedding[str(userid)]+textual_userid_embedding[str(userid)]+modal_and_click
else:
print(f'Error: matrix tag NOT exist!')
exit(1)
save_matrix.append(arr)
cnt += 1
print(f'{cnt} / {user_length} user has Processed. Each length of vector = {len(arr)}')
end = time.time()
print(f'{tag} matrix took {round((end-start)/60,3)} minutes.')
# 保存矩阵
save_npy(path=os.path.join(matrix_path, dataset_tag+'_'+tag+'_matrix'), content=np.array(save_matrix))
pass
########## tiktok ##########
elif dataset_tag == tiktok:
user_finish, user_like, user_device = get_userid_itemid(graph_path, tag=dataset_tag)
for click_tag in [finish, like]:
# 获取用户的embedding
visual_embedding_file = dataset_tag+'_'+click_tag+'_visual_user_embeddings.json'
acoustic_embedding_file = dataset_tag+'_'+click_tag+'_acoustic_user_embeddings.json'
textual_embedding_file = dataset_tag+'_'+click_tag+'_textual_user_embeddings.json'
with rich.progress.open(os.path.join(user_embedding_path, visual_embedding_file), 'r') as f:
visual_userid_embedding = json.loads(f.read())
with rich.progress.open(os.path.join(user_embedding_path, acoustic_embedding_file), 'r') as f:
acoustic_userid_embedding = json.loads(f.read())
with rich.progress.open(os.path.join(user_embedding_path, textual_embedding_file), 'r') as f:
textual_userid_embedding = json.loads(f.read())
# 获取模态信息
visual_modal_dict = get_multimodal_dict(dataset_tag+'_visual')
acoustic_modal_dict = get_multimodal_dict(dataset_tag+'_acoustic')
textual_modal_dict = get_multimodal_dict(dataset_tag+'_textual')
# 将模态全部归一化, 以免交叉时有影响
visual_modal_value = list(visual_modal_dict.values())
acoustic_modal_value = list(acoustic_modal_dict.values())
textual_modal_value = list(textual_modal_dict.values())
visual_modal_value = MinMaxScaler().fit_transform(visual_modal_value) # 71
acoustic_modal_value = MinMaxScaler().fit_transform(acoustic_modal_value) # 10
textual_modal_value = MinMaxScaler().fit_transform(textual_modal_value) # 22
# 更新values
assert len(visual_modal_dict) == len(visual_modal_value)
assert len(acoustic_modal_dict) == len(acoustic_modal_value)
assert len(textual_modal_dict) == len(textual_modal_value)
for modal_dict,modal_value in zip([visual_modal_dict,acoustic_modal_dict,textual_modal_dict],
[visual_modal_value,acoustic_modal_value,textual_modal_value]):
for (index, value),_ in zip(enumerate(list(modal_dict.keys())), tqdm(range(len(modal_value)))):
modal_dict[value] = modal_value[index]
# 抖音数据集每个模态的keys对应不上
common_itemid = list(visual_modal_dict.keys()&acoustic_modal_dict.keys()&textual_modal_dict.keys())
print(f'There are {len(common_itemid)} in common among tree modals.') # 2420353
# 只保留具有共同item_id的部分
new_visual_dict, new_acoustic_dict, new_textual_dict = {}, {}, {}
for key in common_itemid:
new_visual_dict[key] = visual_modal_dict[key]
new_acoustic_dict[key] = acoustic_modal_dict[key]
new_textual_dict[key] = textual_modal_dict[key]
assert len(new_visual_dict)==len(new_acoustic_dict)==len(new_textual_dict)==len(common_itemid)
visual_modal_dict = new_visual_dict
acoustic_modal_dict = new_acoustic_dict
textual_modal_dict = new_textual_dict
visual_modal_value = list(new_visual_dict.values()) # 71
acoustic_modal_value = list(new_acoustic_dict.values()) # 10
textual_modal_value = list(new_textual_dict.values()) # 22
if not only_vat_concat:
# 两两模态交叉
va_hadamard = cross_array(visual_modal_value, acoustic_modal_value) # 10
vt_hadamard = cross_array(visual_modal_value, textual_modal_value) # 22
at_hadamard = cross_array(acoustic_modal_value, textual_modal_value) # 10
# 三个模态交叉
vat_hadamard = cross_array_tri(visual_modal_value, acoustic_modal_value, textual_modal_value) # 10
# 两两模态拼接
va_concat = concat_array(visual_modal_value, acoustic_modal_value) # 81
vt_concat = concat_array(visual_modal_value, textual_modal_value) # 93
at_concat = concat_array(acoustic_modal_value, textual_modal_value) # 32
# 三个模态拼接
vat_concat = concat_array_tri(visual_modal_value, acoustic_modal_value, textual_modal_value) # 103
if not only_vat_concat:
assert len(va_hadamard) == len(vt_hadamard) == len(at_hadamard) == len(vat_hadamard) == len(va_concat) == len(vt_concat) == len(at_concat) == len(vat_concat)
if not only_vat_concat:
(va_hadamard_dict, vt_hadamard_dict, at_hadamard_dict, vat_hadamard_dict,
va_concat_dict, vt_concat_dict, at_concat_dict, vat_concat_dict) = ({}, {}, {}, {}, {}, {}, {}, {})
for key, va_h, vt_h, at_h, vat_h, va_c, vt_c, at_c, vat_c, _ in zip(list(visual_modal_dict.keys()),
va_hadamard, vt_hadamard, at_hadamard, vat_hadamard,
va_concat, vt_concat, at_concat, vat_concat, tqdm(range(len(va_hadamard)))):
va_hadamard_dict[key] = np.array(va_h)
vt_hadamard_dict[key] = np.array(vt_h)
at_hadamard_dict[key] = np.array(at_h)
vat_hadamard_dict[key] = np.array(vat_h)
va_concat_dict[key] = np.array(va_c)
vt_concat_dict[key] = np.array(vt_c)
at_concat_dict[key] = np.array(at_c)
vat_concat_dict[key] = np.array(vat_c)
else:
vat_concat_dict = {}
for key, vat_c, _ in zip(list(visual_modal_dict.keys()), vat_concat, tqdm(range(len(vat_concat)))):
vat_concat_dict[key] = np.array(vat_c)
if not only_vat_concat:
tag_arr = double_modal_cross_arr+triple_modal_cross_arr+double_modal_concat_arr+triple_modal_concat_arr
modal_arr = [va_hadamard_dict, vt_hadamard_dict, at_hadamard_dict, vat_hadamard_dict,
va_concat_dict, vt_concat_dict, at_concat_dict, vat_concat_dict]
else:
tag_arr = triple_modal_concat_arr
modal_arr = [vat_concat_dict]
for tag, modal_dict in zip(tag_arr, modal_arr):
if click_tag == finish:
user_feed = user_finish
elif click_tag == like:
user_feed = user_like
save_matrix = []
cnt, user_length = 0, len(user_feed)
start = time.time()
for userid in user_feed:
for feedid_click, _ in zip(user_feed[userid], tqdm(range(len(user_feed[userid])))):
if feedid_click[0] in modal_dict:
modal_and_click = modal_dict[feedid_click[0]].tolist()+[feedid_click[1]]
else:
continue
if tag == 'va_cross':
arr = [userid]+visual_userid_embedding[str(userid)]+acoustic_userid_embedding[str(userid)]+modal_and_click
elif tag == 'vt_cross':
arr = [userid]+visual_userid_embedding[str(userid)]+textual_userid_embedding[str(userid)]+modal_and_click
elif tag == 'at_cross':
arr = [userid]+acoustic_userid_embedding[str(userid)]+textual_userid_embedding[str(userid)]+modal_and_click
elif tag == 'vat_cross':
arr = [userid]+visual_userid_embedding[str(userid)]+acoustic_userid_embedding[str(userid)]+textual_userid_embedding[str(userid)]+modal_and_click
elif tag == 'va_concat':
arr = [userid]+visual_userid_embedding[str(userid)]+acoustic_userid_embedding[str(userid)]+modal_and_click
elif tag == 'vt_concat':
arr = [userid]+visual_userid_embedding[str(userid)]+textual_userid_embedding[str(userid)]+modal_and_click
elif tag == 'at_concat':
arr = [userid]+acoustic_userid_embedding[str(userid)]+textual_userid_embedding[str(userid)]+modal_and_click
elif tag == 'vat_concat':
# 完全消融 即用单一userid替换embedding
if not user_embedding_exit:
arr = [userid]+[userid]+modal_and_click
# 不完全消融 即改变user embedding的维度
else:
arr = [userid]+visual_userid_embedding[str(userid)]+acoustic_userid_embedding[str(userid)]+textual_userid_embedding[str(userid)]+modal_and_click
else:
print(f'Error: matrix tag NOT exist!')
exit(1)
save_matrix.append(arr)
cnt += 1
print(f'{cnt} / {user_length} user has Processed. Each length of vector = {len(arr)}')
end = time.time()
print(f'{tag} matrix took {round((end-start)/60,3)} minutes.')
# 保存矩阵
save_npy(path=os.path.join(matrix_path, dataset_tag+'_'+click_tag+'_'+tag+'_matrix'), content=np.array(save_matrix))
else:
print(f'Error: wrong dataset tag = {dataset_tag}. dataset tag should be {wechat} or {tiktok}')
exit(0)