{{Macro |Name=Macro Draft Circle 3 Points 3D |Icon=Macro_Draft_Circle_3_Points.png |Description=This macro creates a circle on 3 selected points in the space. The points can be objects such as cubes, cylinder, then selected coordinates will be the centre of these forms. |Author=galou_breizh |Version=01.00 |Date=2013-03-16 |FCVersion=All |Download=[https://www.freecadweb.org/wiki/images/1/10/Macro_Draft_Circle_3_Points.png ToolBar Icon] }}
This macro creates a circle on 3 selected points in the space. The points can be objects such as cubes, cylinder, then selected coordinates will be the centre of these forms.
Select 3 points, or forms in the 3D view and run the macro. If the shape is a line, the coordinate will be the center of the line.
The order of selection of fear forms influencing the AXIS angle and reverse the inclination of the circle. In this case, reverse or change the order of selection of the shapes. The coordinates X, Y, Z of value 0 or alignment not allowing not calculating, can return a division by zero error, and translated as "The three points are aligned"
Macro_Draft_Circle_3_Points_3D.FCMacro
{{MacroCode|code=
From https://en.wikipedia.org/wiki/Circumscribed_circle#Cartesian_coordinates_from_cross-_and_dot-products
Also see : https://math.stackexchange.com/questions/2658318/how-to-find-the-circumcenter-of-a-triangle-and-the-length-of-the-corresponding-r
#OS: Windows Vista #Word size: 32-bit #Version: 0.14.3700 (Git) #Branch: releases/FreeCAD-0-14 #Hash: 32f5aae0a64333ec8d5d160dbc46e690510c8fe1 #Python version: 2.6.2 #Qt version: 4.5.2 #Coin version: 3.1.0 #SoQt version: 1.4.1 #OCC version: 6.5.1
try: import PyQt4 from PyQt4 import QtCore, QtGui except Exception: import PySide from PySide import QtCore, QtGui from math import pi, asin import Draft, FreeCAD, FreeCADGui from FreeCAD import Base
def errorDialog(msg): # Create a simple dialog QMessageBox # The first argument indicates the icon used: one of QtGui.QMessageBox.{NoIcon, Information, Warning, Critical, Question} diag = QtGui.QMessageBox(QtGui.QMessageBox.Critical,u"Error Message",msg) diag.setWindowModality(QtCore.Qt.ApplicationModal) diag.exec_()
def affiche(x,y,z,r,angle): diag = QtGui.QMessageBox(QtGui.QMessageBox.Information,u"Coordinates",u"Coordinate X : "+str(x)+"\r\n"+u"Coordinate Y : "+str(y)+"\n"+u"Coordinate Z : "+str(z)+"\nRadius\t : "+str(r)+"\nAngle\t : "+str(angle)) diag.setWindowModality(QtCore.Qt.ApplicationModal) diag.setWindowModality(QtCore.Qt.NonModal) diag.exec_()
sel = FreeCADGui.Selection.getSelection()
if len(sel)==3 : # Assignment of variables P1 = sel[0].Shape.BoundBox.Center P2 = sel[1].Shape.BoundBox.Center P3 = sel[2].Shape.BoundBox.Center
P1P2 = (P2 - P1).Length
P2P3 = (P3 - P2).Length
P3P1 = (P1 - P3).Length
# Circle radius.
l = ((P1 - P2).cross(P2 - P3)).Length
try:
#if l < 1e-8:
# errorDialog("The three points are aligned")
r = P1P2 * P2P3 * P3P1 / 2 / l
except:
errorDialog("The three points are aligned")
else:
# Sphere center.
a = P2P3**2 * (P1 - P2).dot(P1 - P3) / 2 / l**2
b = P3P1**2 * (P2 - P1).dot(P2 - P3) / 2 / l**2
c = P1P2**2 * (P3 - P1).dot(P3 - P2) / 2 / l**2
P1.multiply(a)
P2.multiply(b)
P3.multiply(c)
PC = P1 + P2 + P3
# Creation of a circle
pl = Base.Placement()
v = (P1 - P2).cross(P3 - P2)
v.normalize()
axis = Base.Vector(0, 0, 1).cross(v)
angle = asin(axis.Length) * 180 / pi
axis.normalize()
pl = Base.Placement(PC, axis, angle)
Draft.makeCircle(r, placement=pl, face=False, support=None)
# Displays the result in the windows
affiche((PC.x),(PC.y),(PC.z),r,angle)
# Displays the result in the FreeCAD report view
#FreeCAD.Console.PrintMessage("Coordinate X : "+str(PC.x)+"\n")
#FreeCAD.Console.PrintMessage("Coordinate Y : "+str(PC.y)+"\n")
#FreeCAD.Console.PrintMessage("Coordinate Z : "+str(PC.z)+"\n")
#FreeCAD.Console.PrintMessage("Radius : "+str(r)+"\n")
#FreeCAD.Console.PrintMessage("Angle : "+str(angle)+"\n")
else: # If the condition is not met, repeat #FreeCAD.Console.PrintError("Select 3 points and repeat\n") errorDialog("Select 3 points and repeat\n")
}}
documentation index > Macro Draft Circle 3 Points 3D