Based on mmdetection framework. You need to install MMDetaction first, follow here: get_started.md
An installation example (cuda 11.6):
conda create -n detX python=3.9
conda activate detX
pip install torch==1.12.1+cu116 torchvision==0.13.1+cu116 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu116
pip install -v -e .
pip install mmcv-full==1.7.0 -f https://download.openmmlab.com/mmcv/dist/cu116/torch1.12/index.html
-
[2024.12.31] We released a baseline for interpretable object detection methods based on mmdetetion version 3.0, supporting GradCAM, ODAM, and D-RISE algorithms.
-
[2023.01.17] I released the Grad-CAM visualization results based on the single-stage object detection method, RetinaNet.
-
[2023.01.16] I released the Grad-CAM visualization results based on the two-stage object detection method, Faster R-CNN.
Selvaraju, Ramprasaath R., et al. "Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization." International Journal of Computer Vision 128.2 (2020): 336-359.
Paper Url: https://arxiv.org/abs/1610.02391
Supported Object Detection Algorithm:
Yolo V3
Paper: https://arxiv.org/abs/1804.02767
Step by step see: gradcam-yolov3.ipynb
Model config and checkpoint: https://huggingface.co/RuoyuChen/objectdetection-saliency-maps/
python gradcam-yolov3.py \
--config <Configs Path> \
--checkpoint <Checkpoint Path> \
--image-path <Your Image Path> \
--bbox-index 0 \
--save-dir images/GradCAM/YOLOV3
Visualization:
Faster R-CNN (C4)
Paper: https://arxiv.org/abs/1506.01497
Step by step see: gradcam-faster-rcnn-C4-proposal.ipynb and gradcam-faster-rcnn-C4-global.ipynb
mkdir checkpoints
cd checkpoints
wget https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_c4_1x_coco/faster_rcnn_r50_caffe_c4_1x_coco_20220316_150152-3f885b85.pth
cd ..
visualization based on proposal:
python gradcam-frcn-c4-proposal.py \
--config <Configs Path> \
--checkpoint <Checkpoint Path> \
--image-path <Your Image Path> \
--bbox-index 0 \
--save-dir images/GradCAM/FRCN-C4
visualization based on global:
python gradcam-frcn-c4-global.py \
--config <Configs Path> \
--checkpoint <Checkpoint Path> \
--image-path <Your Image Path> \
--bbox-index 0 \
--save-dir images/GradCAM/FRCN-C4
RetinaNet
Paper: https://arxiv.org/abs/1708.02002
No step by step
wget https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r50_fpn_1x_coco/retinanet_r50_fpn_1x_coco_20200130-c2398f9e.pth
python gradcam-retinanet.py \
--config <Configs Path> \
--checkpoint <Checkpoint Path> \
--image-path <Your Image Path> \
--bbox-index 0 \
--save-dir images/GradCAM/RetinaNet
Visualization:
Vitali Petsiuk, Rajiv Jain, Varun Manjunatha, Vlad I. Morariu, Ashutosh Mehra, Vicente Ordonez, Kate Saenko; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021, pp. 11443-11452
Supported Object Detection Algorithm:
Yolo V3
Paper: https://arxiv.org/abs/1804.02767
Step by step see: drise-yolov3.ipynb
Model config and checkpoint: https://huggingface.co/RuoyuChen/objectdetection-saliency-maps/
python drise-yolov3.py \
--config <Configs Path> \
--checkpoint <Checkpoint Path> \
--image-path <Your Image Path> \
--bbox-index 0 \
--save-dir images/DRISE/YOLOV3
Visualization: