-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
80 lines (64 loc) · 3.01 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
'''
This script defines the main training procedure.
'''
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from util.dataset import A2BDataset
from util.util import save_checkpoint, load_checkpoint, save_images, set_seed
import config
from models.cyclegan_model import CycleGANModel
from tqdm import tqdm
if __name__ == '__main__':
set_seed(423)
train_round = 0 # global training rounds, used for tensorboard writer
# define the CycleGAN model
cyc_gan = CycleGANModel(isTrain=True)
# define the dataset and data loader
train_dataset = A2BDataset(root_A=config.TRAIN_DIR_A, root_B=config.TRAIN_DIR_B, transform=config.transforms)
train_loader = DataLoader(
train_dataset,
batch_size=config.BATCH_SIZE,
shuffle=True,
num_workers=config.NUM_WORKERS
)
writer = SummaryWriter('log')
if config.LOAD_MODEL:
checkpoint = load_checkpoint(config.CHECKPOINT_FILE_PATH)
cyc_gan.load_state_dict(checkpoint)
for epoch in range(config.NUM_EPOCHS):
real_A, fake_A, real_B, fake_B = 0, 0, 0, 0
loop = tqdm(train_loader, leave=True)
for idx, (img_a, img_b) in enumerate(loop):
img_a = img_a.to(config.DEVICE)
img_b = img_b.to(config.DEVICE)
cyc_gan.set_input(img_a, img_b)
cyc_gan.optimize_parameters()
# get the training statistics
cur_losses = cyc_gan.get_current_losses()
writer.add_scalars('Generator and Discriminator Losses', cur_losses, train_round)
cur_confidence = cyc_gan.get_current_confidence()
writer.add_scalars('Discriminators\' prediction confidence', cur_confidence, train_round)
real_A += cur_confidence['conf_real_A'].item()
fake_A += cur_confidence['conf_fake_A'].item()
real_B += cur_confidence['conf_real_B'].item()
fake_B += cur_confidence['conf_fake_B'].item()
if (idx + 1) % config.SAVE_ROUND == 0:
images_A, images_B = cyc_gan.get_current_images()
save_images(images_A, images_B, writer, idx, train_round)
if (idx + 1) % (2 * config.SAVE_ROUND) == 0 and config.SAVE_MODEL:
checkpoint = cyc_gan.state_dict()
save_checkpoint(config.CHECKPOINT_FILE_PATH, checkpoint)
# if the training time is too long for an epoch, this will reduce the redundant training time
# if the program is disconnected from Google Colab
loop.set_description('Epoch {}'.format(epoch + 1))
loop.set_postfix(
real_A=real_A / (idx + 1),
fake_A=fake_A / (idx + 1),
real_B=real_B / (idx + 1),
fake_B=fake_B / (idx + 1)
)
train_round += 1
if config.SAVE_MODEL:
checkpoint = cyc_gan.state_dict()
save_checkpoint(config.CHECKPOINT_FILE_PATH, checkpoint, epoch + 1)
writer.close()