-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.html
277 lines (246 loc) · 13.9 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
<!DOCTYPE html>
<html lang='en'>
<style>
.table-container {
width: 80%;
table-layout: fixed; /* Ensures the table respects the width of each column */
border-collapse: separate; /* Separates the borders of each cell */
border-spacing: 20px 0; /* Adds space between the columns */
}
.image-cell {
width: 30%;
text-align: center;
vertical-align: middle;
}
.description-cell {
width: 70%;
vertical-align: middle;
text-align: left;
padding-left: 10px; /* Adjust this padding to manage the text spacing from the image */
}
.description-cell ul {
list-style-type: disc; /* Ensures bullet points are shown */
padding-left: 20px; /* Adds indentation to align the bullets properly */
}
img {
width: 100%; /* Adjust this to scale the image as needed */
/* You can uncomment the next line if you want rounded images */
/* border-radius: 9999px; */
}
</style>
<head>
<base href=".">
<link rel="shortcut icon" type="image/png" href="assets/smile.png"/>
<link rel="stylesheet" type="text/css" media="all" href="assets/main.css"/>
<meta name="description" content="RL Bootcamp">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="KeyWords" content="RL Bootcamp">
<meta charset="UTF-8">
<title>RL Bootcamp</title>
</head>
<body>
<div class="banner">
<img src="bootcamp.jpg" alt="RL Bootcamp" width="1000">
<div class="top-left">
<span class="title1">Reinforcement Learning Bootcamp</span>
</div>
<div class="bottom-right">
September 25-27, 2024 <br> PLUS University Salzburg
</div>
</div>
<table class="navigation">
<tr>
<td class="navigation">
<a title="Conference Home Page" href=".">Home</a>
</td>
<td class="navigation">
<a
class="current"
title="Program"
href="program"
>Program</a
>
</td>
<td class="navigation">
<a
class="current"
title="Register for free"
href="registration"
>Registration
</a>
</td>
<td class="navigation">
<a
class="current"
title="Directions to the Conference"
href="directions"
>Directions</a
>
</td>
</tr>
</table>
<p>
<b>The organising team would like to express heartfelt gratitude for the active participation and the vibrant atmosphere brought to our international RL Bootcamp in Salzburg. We had a fantastic time together and were thrilled to welcome an unexpected number of 75 participants. We look forward to seeing you at our RL Bootcamp 2025. Stay tuned!
</b></p>
<figure>
<img src="assets/RL.png" style="display: block; margin-left: auto; margin-right: auto; border-radius: 0px; width: 1000px;">
<figcaption>Photo by Simon Haigermoser</figcaption>
</figure>
<h2>What is this bootcamp about?</h2>
<p>
Reinforcement learning (RL) is a powerful learning paradigm of machine learning (ML). Reinforcement Learning is at the cutting edge of artificial intelligence, powering advancements in robotics, autonomous systems, game playing, and decision-making algorithms. Mastering RL opens up a world of opportunities in both research and industry, enabling you to contribute to groundbreaking innovations.
</p>
<p>
Capturing your control problem as a meaningful Markov Decision Process (MDP) is not trivial. Additional challenges arise in the training in terms of stability and evaluation. Other practical aspects include reproducibility, efficiency, implementation, deployment in hardware, and choosing the most suitable algorithm for your problem.
</p>
<p>
RL applications are very promising, but have been deployed in real machines only a handful of times. This workshop aims at lowering the barrier in applying RL and making it a more used tool.
</p>
<!-- -->
<!-- <h2>Who should attend?</h2>-->
<!-- <p> -->
<!-- This bootcamp is ideal for students, professionals, and enthusiasts with a basic understanding of machine learning who are looking to deepen their knowledge in reinforcement learning. </p>-->
<!-- <p>-->
<!-- <strong> Learn theory and hands-on techniques from leading experts</strong> in the field with real-world experience in applying RL to solve complex problems:-->
<!--<!– <ul>–>-->
<!--<!– <li ><strong>Simon Hirlaender</strong> leads the Reinforcement Learning Team at the IDA Lab within PLUS University Salzburg's Faculty of Digital and Analytical Sciences. His work spans foundational AI research to practical applications in collaboration with local industries. Previously at CERN, where he completed his PhD and remains a visiting scientist, Simon focuses on reinforcement learning, control theory, and AI integration for solving global challenges. He actively participates in academic and industry collaborations, organizes significant events like RL Bootcamp, and delivers impactful talks, such as his recent TEDx presentation. At PLUS University, he teaches advanced reinforcement learning and mentors students on diverse AI projects.</li>–>-->
<!--<!– <li><strong>Catherine Laflamme</strong> has a background in quantum physics and currently works at Fraunhofer Austria. Her focus is on applied artificial intelligence, particularly understanding the potential of reinforcement learning in real-world scenarios.</li>–>-->
<!--<!– </ul>–>-->
<!-- </p>-->
<!-- <p> <strong>Collaborative learning environment:</strong> Engage with peers who share your passion for AI and RL.</p>-->
<!-- <p> <strong>State-of-the-art techniques:</strong> Stay ahead of the curve with lessons on the latest RL algorithms, tools, and best practices.</p>-->
<!-- <p> <strong>Stunning Salzburg setting:</strong> Allow the beauty of Salzburg to inspire your learning journey and fuel your creativity.-->
<!-- </p>-->
<h2>Who should attend?</h2>
<ul>
<li><strong>Target Audience:</strong> Ideal for students, professionals, and enthusiasts with a basic understanding of machine learning who want to deepen their knowledge in reinforcement learning.</li>
<li><strong>Expert Instruction:</strong> Learn theory and hands-on techniques from leading experts with real-world experience in applying RL to solve complex problems.</li>
<li><strong>Collaborative Learning Environment:</strong> Engage with peers who share your passion for AI and RL in a collaborative atmosphere.</li>
<li><strong>Advanced Content:</strong> Stay ahead of the curve with lessons on the latest RL algorithms, tools, and best practices.</li>
<li><strong>Inspiring Location:</strong> The stunning setting of Salzburg is meant to inspire your learning journey and fuel your creativity.</li>
</ul>
<!--<h4><b>Participation in the workshop is free of charge</b></h4>-->
<!--<p><b><a href="registration">Please register here for free</a></b></p>-->
<!--<p><b>Contact us at <a href="mailto:sarl.ida.plus@gmail.com">sarl.ida.plus(at)gmail.com</a> or <a href="mailto:sarl.ida.plus@gmail.com">simon.hirlaender(at)plus.ac.at</a></b> </p>-->
<h2>Keynotes</h2>
<p>
The event is hosted by the Smart Analytics and Reinforcement Learning (SARL) team at IDA Lab, PLUS University of Salzburg, in collaboration with Fraunhofer Austria and AI Austria. It is offered free of charge to ensure accessibility for all those interested in Reinforcement Learning. We are thrilled about our lineup of keynote speakers and eagerly anticipate their presentations!
</p>
<!-- <p>-->
<!-- <a href="https://sites.google.com/view/razp/home"><b>Razvan Pascanu</b></a-->
<!-- ><br />-->
<!-- <b>-->
<!-- Research Scientist<br />-->
<!-- Google DeepMind </b-->
<!-- ><br />-->
<!-- </p>-->
<table class="table-container">
<tr>
<!-- Column for Image and Basic Info -->
<td class="image-cell">
<img src="assets/speaker_razvan_pascanu_squared.png" alt="Razvan Pascanu" style="width: 70%; border-radius: 9999px" ;><br>
<a href="https://sites.google.com/view/razp/home"><b>Razvan Pascanu</b></a>
<b>Research Scientist<br>
Google DeepMind</b>
</td>
<!-- Column for Detailed Description -->
<td class="description-cell">
Razvan Pascanu is a research scientist at Google Deepmind. He received his PhD from University of Montreal under the supervision of Prof. Yoshua Bengio. His research focuses on several key areas:
understanding how to optimize deep models efficiently and at scale, making learning more data-efficient, particularly in Reinforcement Learning (RL) and exploring the dynamics of learning, especially under gradient descent conditions.
</td>
</tr>
</table>
<table class="table-container">
<tr>
<!-- Column for Image and Basic Info -->
<td class="image-cell">
<img src="assets/speaker_kai_dresia1.jpg" alt="Kai Dresia" style="width: 70%; border-radius: 9999px";><br>
<a href="https://www.linkedin.com/in/kaidresia"><b>Kai Dresia</b></a><br>
<b>Research Scientist<br>
German Aerospace Center (DLR)</b>
</td>
<!-- Column for Detailed Description -->
<td class="description-cell">
Kai Dresia received his master's degree in aerospace engineering from RWTH Aachen University, Germany. He is a research scientist for intelligent rocket engine control systems at the German Aerospace Center (DLR). The goal of his research is to develop and experimentally test an intelligent rocket engine controller for future liquid propellant rocket engines.
</td>
</tr>
</table>
<table class="table-container">
<tr>
<!-- Column for Image and Basic Info -->
<td class="image-cell">
<img src="assets/speaker_anton_fuxjaeger.jpg" alt="Anton Fuxjaeger" style="width: 70%; border-radius: 9999px";><br>
<a href="https://github.com/anton-musrevinu"><b>Anton Fuxjaeger</b></a><br>
<b>EnliteAI Gmbh<br>
Head of Reinforcement Learning</b>
</td>
<!-- Column for Detailed Description -->
<td class="description-cell">
Anton Fuxjaeger received his master's degree in Pervasive Parallelism (AI) from University of Edinburgh, Scotland. He leads EnliteAI's research and development team in the area of Reinforcement Learning. The goal of his research is applied Reinforcement Learning, with a strong focus on power grid optimization. He is also developing the open source RL framework Maze (<a href="https://github.com/enlite-ai/maze">enlite-ai/maze</a>).
</td>
</tr>
</table>
<table class="table-container">
<td class="image-cell">
<img src="assets/speaker_michael_somma.jpg" alt="Michael Somma" style="width: 70%; border-radius: 9999px;">
</p>
<a href="https://www.linkedin.com/in/michaelsomma/"><b>Michael Somma</b></a
><br />
<b>
AI Researcher in Cybersecurity
<br />
Joanneum Research</b
><br />
</td>
<td class="description-cell">
As an AI Researcher at Joanneum Research in Graz, he brings a broad portfolio in artificial intelligence in academic and commercial settings. As a Research Associate at the University of Vienna, he gained experience applying various machine learning techniques, including computer vision and regression models, contributing to two FWF-funded research projects. At Deloitte, he led the deployment of advanced natural language processing solutions and was instrumental in pioneering RL applications. His expertise spans developing automated trading systems with RL and integrating RL into physical simulations.
</td>
<p>
</table>
<h2>Organizers</h2>
<div style="display: flex; flex-wrap: wrap; align-items: flex-start; gap: 10px; width: 1000px">
<a href="https://mathphyssim.github.io/" style="flex: 1;">
<img src="assets/organizer_simon_hirlaender.jpg" alt="Simon Hirlaender" style="width: 100%; border-radius: 9999px;">
<b>Simon Hirlaender</b> <br>
SARL Team lead,
University of Salzburg
</a>
<a href="https://www.salzburgresearch.at/en/person/pochaba-sabrina/" style="flex: 1;">
<img src="assets/organizer_sabrina_pochaba_square.jpg" alt="Sabrina Pochaba" style="width: 100%; border-radius: 9999px;">
<b>Sabrina Pochaba</b> <br>
SARL Team,
University of Salzburg
</a>
<a href="https://www.plus.ac.at/aihi/der-fachbereich/ida-lab/teams/sarl/" style="flex: 1;">
<img src="assets/organizer_olga_mironova.jpg" alt="Olga Mironova" style="width: 100%; border-radius: 9999px;">
<b>Olga Mironova</b> <br>
SARL Team,
University of Salzburg
</a>
<a href="https://www.linkedin.com/in/catherine-laflamme-5a1a7131/" style="flex: 1;">
<img src="assets/organizer_catherine_laflamme.jpg" alt="Catherine Laflamme" style="width: 100%; border-radius: 9999px;">
<b>Catherine Laflamme</b> <br>
Fraunhofer Austria
</a>
<a href="https://www.linkedin.com/in/andreas-windisch-physics/" style="flex: 1;">
<img src="assets/organizer_andreas_windisch.jpg" alt="Andreas Windisch" style="width: 100%; border-radius: 9999px;">
<b>Andreas Windisch</b> <br>
AI Austria
</a>
<a href="https://www.linkedin.com/in/tgallien/" style="flex: 1;">
<img src="assets/organizer_thomas_gallien.JPG" alt="Thomas Gallien" style="width: 100%; border-radius: 9999px;">
<b>Thomas Gallien</b> <br>
AI Austria
</a>
<a href="https://www.dinu.at/profile/home/" style="flex: 1;">
<img src="assets/organizer_marius_constantin_dinu.jpeg" alt="Marius-Constantin Dinu" style="width: 100%; border-radius: 9999px;">
<b>Marius-Constantin Dinu</b> <br>
AI Austria
</a>
</div>
<footer>
© 2024 Smart Analytics and Reinforcement Learning (SARL) Salzburg</p>
</footer>
</body>
</html>