-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathpretrain.py
437 lines (318 loc) · 15.1 KB
/
pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
# -*- coding: utf-8 -*-
# @Author: Simon Dahan
#
# Created on Fri Oct 01 2021
#
# by Simon Dahan @SD3004
#
# Copyright (c) 2021 MeTrICS Lab
#
'''
This file implements the training procedure to train a SiT model.
Models can be either trained:
- from scratch
- from pretrained weights (after self-supervision or ImageNet for instance)
Models can be trained for two tasks:
- age at scan prediction
- birth age prediction
Pretrained ImageNet models are downloaded from the Timm library.
'''
import os
import argparse
import yaml
import sys
import timm
from datetime import datetime
sys.path.append('../')
sys.path.append('./')
sys.path.append('../../')
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import pandas as pd
from torch.optim.lr_scheduler import StepLR
from torch.optim.lr_scheduler import ReduceLROnPlateau
from models.sit import SiT
from models.mpp import masked_patch_pretraining
from warmup_scheduler import GradualWarmupScheduler
from utils.utils import load_weights_imagenet
from torch.utils.tensorboard import SummaryWriter
def train(config):
gpu = config['training']['gpu']
LR = config['training']['LR']
use_l1loss = config['training']['l1loss']
epochs = config['training']['epochs']
val_epoch = config['training']['val_epoch']
testing = config['training']['testing']
bs = config['training']['bs']
bs_val = config['training']['bs_val']
configuration = config['data']['configuration']
task = config['data']['task']
ico = config['resolution']['ico']
sub_ico = config['resolution']['sub_ico']
data_path = config['data']['data_path'].format(task,configuration)
folder_to_save_model = config['logging']['folder_to_save_model']
num_patches = config['sub_ico_{}'.format(sub_ico)]['num_patches']
num_vertices = config['sub_ico_{}'.format(sub_ico)]['num_vertices']
device = torch.device("cuda:{}".format(gpu) if torch.cuda.is_available() else "cpu")
print('')
print('#'*30)
print('##### Config #####')
print('#'*30)
print('')
print(device)
print(data_path)
##############################
###### DATASET ######
##############################
print('')
print('#'*30)
print('##### Loading data#####')
print('#'*30)
print('')
print('LOADING DATA: ICO {} - sub-res ICO {}'.format(ico,sub_ico))
#loading already processed and patched cortical surfaces.
train_data = np.load(os.path.join(data_path,'train_data.npy'))
train_label = np.load(os.path.join(data_path,'train_labels.npy'))
print('training data: {}'.format(train_data.shape))
val_data = np.load(os.path.join(data_path,'validation_data.npy'))
val_label = np.load(os.path.join(data_path,'validation_labels.npy'))
print('validation data: {}'.format(val_data.shape))
train_data_dataset = torch.utils.data.TensorDataset(torch.from_numpy(train_data).float(),
torch.from_numpy(train_label).float())
train_loader = torch.utils.data.DataLoader(train_data_dataset,
batch_size = bs,
shuffle=True,
num_workers=16)
val_data_dataset = torch.utils.data.TensorDataset(torch.from_numpy(val_data).float(),
torch.from_numpy(val_label).float())
val_loader = torch.utils.data.DataLoader(val_data_dataset,
batch_size = bs_val,
shuffle=False,
num_workers=16)
if testing:
test_data = np.load(os.path.join(data_path,'test_data.npy'))
test_label = np.load(os.path.join(data_path,'test_labels.npy')).reshape(-1)
print('testing data: {}'.format(test_data.shape))
print('')
test_data_dataset = torch.utils.data.TensorDataset(torch.from_numpy(test_data).float(),
torch.from_numpy(test_label).float())
test_loader = torch.utils.data.DataLoader(test_data_dataset,
batch_size = bs_val,
shuffle=False,
num_workers=16)
##############################
###### LOGGING ######
##############################
# creating folders for logging.
try:
os.mkdir(folder_to_save_model)
print('Creating folder: {}'.format(folder_to_save_model))
except OSError:
print('folder already exist: {}'.format(folder_to_save_model))
date = datetime.today().strftime('%Y-%m-%d-%H:%M:%S')
# folder time
folder_to_save_model = os.path.join(folder_to_save_model,date)
print(folder_to_save_model)
if config['transformer']['dim'] == 192:
folder_to_save_model = folder_to_save_model + '-tiny'
elif config['transformer']['dim'] == 384:
folder_to_save_model = folder_to_save_model + '-small'
elif config['transformer']['dim'] == 768:
folder_to_save_model = folder_to_save_model + '-base'
if config['training']['load_weights_imagenet']:
folder_to_save_model = folder_to_save_model + '-imgnet'
if config['training']['load_weights_ssl']:
folder_to_save_model = folder_to_save_model + '-ssl'
if config['training']['dataset_ssl']=='hcp':
folder_to_save_model = folder_to_save_model + '-hcp'
elif config['training']['dataset_ssl']=='dhcp-hcp':
folder_to_save_model = folder_to_save_model + '-dhcp-hcp'
elif config['training']['dataset_ssl']=='dhcp':
folder_to_save_model = folder_to_save_model + '-dhcp'
if config['training']['finetuning']:
folder_to_save_model = folder_to_save_model + '-finetune'
else:
folder_to_save_model = folder_to_save_model + '-freeze'
try:
os.mkdir(folder_to_save_model)
print('Creating folder: {}'.format(folder_to_save_model))
except OSError:
print('folder already exist: {}'.format(folder_to_save_model))
writer = SummaryWriter(log_dir=folder_to_save_model)
##############################
####### MODEL #######
##############################
print('')
print('#'*30)
print('##### Init model #####')
print('#'*30)
print('')
if config['transformer']['model'] == 'SiT':
model = SiT(dim=config['transformer']['dim'],
depth=config['transformer']['depth'],
heads=config['transformer']['heads'],
mlp_dim=config['transformer']['mlp_dim'],
pool=config['transformer']['pool'],
num_patches=num_patches,
num_classes=config['transformer']['num_classes'],
num_channels=config['transformer']['num_channels'],
num_vertices=num_vertices,
dim_head=config['transformer']['dim_head'],
dropout=config['transformer']['dropout'],
emb_dropout=config['transformer']['emb_dropout'])
if config['training']['load_weights_ssl']:
print('Loading weights from self-supervision training')
model.load_state_dict(torch.load(config['weights']['ssl_mpp'],map_location=device),strict=False)
if config['training']['load_weights_imagenet']:
print('Loading weights from imagenet pretraining')
model_trained = timm.create_model(config['weights']['imagenet'], pretrained=True)
new_state_dict = load_weights_imagenet(model.state_dict(),model_trained.state_dict(),config['transformer']['depth'])
model.load_state_dict(new_state_dict)
model.to(device)
print('Number of parameters encoder: {:,}'.format(sum(p.numel() for p in model.parameters() if p.requires_grad)))
print('')
##################################################
####### SELF-SUPERVISION PIPELINE #######
##################################################
if config['SSL'] == 'mpp':
print('Pretrain using Masked Patch Prediction')
ssl = masked_patch_pretraining(transformer=model,
dim_in = config['transformer']['dim'],
dim_out= num_vertices*config['transformer']['num_channels'],
device=device,
mask_prob=config['pretraining_mpp']['mask_prob'],
replace_prob=config['pretraining_mpp']['replace_prob'],
swap_prob=config['pretraining_mpp']['swap_prob'],
num_vertices=num_vertices,
channels=config['transformer']['num_channels'])
else:
raise('not implemented yet')
ssl.to(device)
print('Number of parameters pretraining pipeline : {:,}'.format(sum(p.numel() for p in ssl.parameters() if p.requires_grad)))
print('')
#####################################
####### OPTIMISATION #######
#####################################
if config['optimisation']['optimiser']=='Adam':
print('using Adam optimiser')
optimizer = optim.Adam(model.parameters(), lr=LR, weight_decay=config['Adam']['weight_decay'])
elif config['optimisation']['optimiser']=='SGD':
print('using SGD optimiser')
optimizer = optim.SGD(model.parameters(), lr=LR,
weight_decay=config['SGD']['weight_decay'],
momentum=config['SGD']['momentum'],
nesterov=config['SGD']['nesterov'])
elif config['optimisation']['optimiser']=='AdamW':
print('using AdamW optimiser')
optimizer = optim.AdamW(model.parameters(),
lr=LR,
weight_decay=config['AdamW']['weight_decay'])
else:
raise('not implemented yet')
###################################
####### SCHEDULING #######
###################################
it_per_epoch = np.ceil(len(train_loader))
##################################
###### PRE-TRAINING ######
##################################
print('')
print('#'*30)
print('#### Starting pre-training ###')
print('#'*30)
print('')
best_val_loss = 100000000000
c_early_stop = 0
for epoch in range(epochs):
ssl.train()
running_loss = 0
for i, data in enumerate(train_loader):
inputs, _ = data[0].to(device), data[1].to(device)
optimizer.zero_grad()
if config['SSL'] == 'mpp':
mpp_loss, _ = ssl(inputs)
mpp_loss.backward()
optimizer.step()
running_loss += mpp_loss.item()
writer.add_scalar('loss/train_it', mpp_loss.item(), epoch*it_per_epoch+1)
##############################
######### LOG IT ###########
##############################
if (epoch+1)%5==0:
print('| Epoch - {} | It - {} | Loss - {:.4f} | LR - {}'.format(epoch+1, epoch*it_per_epoch + i +1, running_loss / (i+1), optimizer.param_groups[0]['lr']))
loss_pretrain_epoch = running_loss / (i+1)
writer.add_scalar('loss/train', loss_pretrain_epoch, epoch+1)
##############################
###### VALIDATION ######
##############################
if (epoch+1)%val_epoch==0:
running_val_loss = 0
ssl.eval()
with torch.no_grad():
for i, data in enumerate(val_loader):
inputs, _ = data[0].to(device), data[1].to(device)
if config['SSL'] == 'mpp':
mpp_loss, _ = ssl(inputs)
running_val_loss += mpp_loss.item()
loss_pretrain_val_epoch = running_val_loss /(i+1)
writer.add_scalar('loss/val', loss_pretrain_val_epoch, epoch+1)
print('| Validation | Epoch - {} | Loss - {} | '.format(epoch+1, loss_pretrain_val_epoch))
if loss_pretrain_val_epoch < best_val_loss:
best_val_loss = loss_pretrain_val_epoch
best_epoch = epoch+1
c_early_stop = 0
config['results'] = {}
config['results']['best_epoch'] = best_epoch
config['results']['best_current_loss'] = loss_pretrain_epoch
config['results']['best_current_loss_validation'] = best_val_loss
with open(os.path.join(folder_to_save_model,'hparams.yml'), 'w') as yaml_file:
yaml.dump(config, yaml_file)
print('saving_model')
torch.save({ 'epoch':epoch+1,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss':loss_pretrain_epoch,
},
os.path.join(folder_to_save_model, 'encoder-best.pt'))
torch.save({ 'epoch':epoch+1,
'model_state_dict': ssl.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss':loss_pretrain_epoch,
},
os.path.join(folder_to_save_model, 'encoder-decoder-best.pt'))
print('')
print('Final results: best model obtained at epoch {} - loss {}'.format(best_epoch,best_val_loss))
config['logging']['folder_model_saved'] = folder_to_save_model
config['results']['final_loss'] = loss_pretrain_epoch
config['results']['training_finished'] = True
with open(os.path.join(folder_to_save_model,'hparams.yml'), 'w') as yaml_file:
yaml.dump(config, yaml_file)
#####################################
###### SAVING FINAL CKPT ######
#####################################
torch.save({'epoch':epoch+1,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss':loss_pretrain_epoch,
},
os.path.join(folder_to_save_model,'encoder-final.pt'))
torch.save({'epoch':epoch+1,
'model_state_dict': ssl.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss':loss_pretrain_epoch,
},
os.path.join(folder_to_save_model,'encoder-decoder-final.pt'))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='ViT')
parser.add_argument(
'config',
type=str,
default='./config/hparams.yml',
help='path where the data is stored')
args = parser.parse_args()
with open(args.config) as f:
config = yaml.safe_load(f)
# Call training
train(config)