-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspabal.m
94 lines (85 loc) · 3.13 KB
/
spabal.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
function [sysr,hsv] = spabal(sys,tol,ord,alpha)
%SPABAL Singular perturbation approximation with balancing.
% [SYSR,HSV] = SPABAL(SYS,TOL,ORD,ALPHA) calculates for the
% transfer function
% -1
% G(lambda) = C(lambdaI-A) B + D
%
% of an original system SYS = (A,B,C,D) an approximate
% transfer function
% -1
% Gr(lambda) = Cr(lambdaI-Ar) Br + Dr
%
% of a reduced order system SYSR = (Ar,Br,Cr,Dr) using the
% Singular Perturbation Approximation method on the ALPHA-stable
% part of SYS (see Method with 'type btabal'). For a stable
% system SYS, the resulting reduced system SYSR is balanced.
%
% TOL is a tolerance vector [TOL1, TOL2], where TOL1 is the
% tolerance for model reduction and TOL2 is the tolerance
% for computing a minimal realization of the ALPHA-stable part.
%
% ORD specifies the desired order of the reduced system SYSR.
%
% ALPHA is the stability boundary for the eigenvalues of A.
% For a continuous-time system ALPHA <= 0 is the boundary value
% for the real parts of eigenvalues, while for a discrete-time
% system, 1 >= ALPHA >= 0 represents the boundary value for the
% moduli of eigenvalues.
%
% HSV contains the decreasingly ordered Hankel singular values of
% the ALPHA-stable part of SYS.
%
% The order NR of the reduced system SYSR is determined as follows:
% let NU be the order of the ALPHA-unstable part of SYS and let
% NSMIN be the order of a minimal realization of the ALPHA-stable
% part (number of Hankel singular values greater than TOL2). Then
% (1) if TOL1 > 0 and ORD < 0, then NR = NU + min(NRS,NSMIN), where
% NRS is the number of Hankel singular values greater than TOL1;
% (2) if ORD >= 0, then NR = NU+MIN(MAX(0,ORD-NU),NSMIN).
% Method:
% The following approach is used to reduce a given G:
%
% 1) Decompose additively G as
%
% G = G1 + G2
%
% such that G1 = (As,Bs,Cs,D) has only ALPHA-stable poles and
% G2 = (Au,Bu,Cu,0) has only ALPHA-unstable poles.
%
% 2) Determine G1r, a reduced order approximation of the
% ALPHA-stable part G1 using the Singular Perturbation
% Approximation method with balancing.
%
% 3) Assemble the reduced model Gr as
%
% Gr = G1r + G2.
%
% RELEASE 2.0 of SLICOT Model and Controller Reduction Toolbox.
% Based on SLICOT RELEASE 5.7, Copyright (c) 2002-2020 NICONET e.V.
%
% Interface M-function to the SLICOT-based MEX-function SYSRED.
% A. Varga 04-05-1998. Revised 04-12-1998, 02-16-1999.
% Revised, V. Sima 12-01-2002.
%
if ~isa(sys,'lti')
error('The input system SYS must be an LTI object')
end
ni = nargin;
discr = double(sys.ts > 0);
if ni < 4
alpha = -sqrt(eps);
if discr
alpha = 1 + alpha;
end
end
if ni < 3
ord = -1;
end
if ni < 2
tol = 0;
end
[a,b,c,d]=ssdata(sys);
[ar,br,cr,dr,hsv]=sysred(3,a,b,c,d,tol,discr,ord,alpha);
sysr = ss(ar,br,cr,dr,sys);
% end spabal