-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathRaw-MOCAS.py
166 lines (139 loc) · 5.51 KB
/
Raw-MOCAS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import numpy as np
import pickle
import csv
def data(csv):
modality1_data = []
modality2_data = []
modality3_data = []
modality4_data = []
modality5_data = []
label_data = []
for i,line in enumerate(csv):
if i >= 1:
modality1_data1 = []
modality2_data1 = []
modality3_data1 = []
modality4_data1 = []
modality5_data1 = []
modality1_data1.append(line[54].strip('[').rstrip(']').split(', '))
modality2 = line[52].strip('[').rstrip(']').replace("\n", '').split(', ')
modality2_data2 = list(filter(None, modality2))
modality2_data1.append(modality2_data2)
for a in range(12,17,1):
modality3_data1.append(line[a].strip('[').rstrip(']').split(', '))
for b in range(19,44,1):
modality4_data1.append(line[b].strip('[').rstrip(']').split(', '))
modality5_data1.append(float(line[-5].strip('[').rstrip(']')))
modality1_data.append(modality1_data1)
modality2_data.append(modality2_data1)
modality3_data.append(modality3_data1)
modality4_data.append(modality4_data1)
modality5_data.append(modality5_data1)
if line[9] == "high":
label_data.append(2)
elif line[9] == "medium":
label_data.append(1)
elif line[9] == "low":
label_data.append(-1)
csv_len = len(modality1_data)
return modality1_data,modality2_data,modality3_data,modality4_data,modality5_data,label_data,csv_len
def pkl_make(modality11,modality21,modality31,modality41,modality51,label1,train_id,val_id,test_id,pkl,epoch):
print('data over'+ str(epoch))
modality1_train = np.array(modality11)[train_id].reshape(train_id.shape[0],1,6)
modality1_val = np.array(modality11)[val_id].reshape(val_id.shape[0],1,6)
modality1_test = np.array(modality11)[test_id].reshape(test_id.shape[0],1,6)
modality2_train = np.array(modality21)[train_id].reshape(train_id.shape[0],1,128)
modality2_val = np.array(modality21)[val_id].reshape(val_id.shape[0],1,128)
modality2_test = np.array(modality21)[test_id].reshape(test_id.shape[0],1,128)
modality3_train = np.array(modality31)[train_id].reshape(train_id.shape[0],5,128)
modality3_val = np.array(modality31)[val_id].reshape(val_id.shape[0],5,128)
modality3_test = np.array(modality31)[test_id].reshape(test_id.shape[0],5,128)
modality4_train = np.array(modality41)[train_id].reshape(train_id.shape[0],25,8)
modality4_val = np.array(modality41)[val_id].reshape(val_id.shape[0],25,8)
modality4_test = np.array(modality41)[test_id].reshape(test_id.shape[0],25,8)
modality5_train = np.array(modality51)[train_id].reshape(train_id.shape[0],1,1)
modality5_val = np.array(modality51)[val_id].reshape(val_id.shape[0],1,1)
modality5_test = np.array(modality51)[test_id].reshape(test_id.shape[0],1,1)
id_train = np.arange(train_id.shape[0]).reshape(train_id.shape[0],1,1)
id_val = np.arange(val_id.shape[0]).reshape(val_id.shape[0],1,1)
id_test = np.arange(test_id.shape[0]).reshape(test_id.shape[0],1,1)
label_train = np.array(label1)[train_id].reshape(train_id.shape[0],1,1)
label_val = np.array(label1)[val_id].reshape(val_id.shape[0],1,1)
label_test = np.array(label1)[test_id].reshape(test_id.shape[0],1,1)
print('array over'+ str(epoch))
pkl1 = {}
train = {}
test = {}
valid ={}
train['id'] = id_train
train['modality_1'] = modality1_train
train['modality_2'] = modality2_train
train['modality_3'] = modality3_train
train['modality_4'] = modality4_train
train['modality_5'] = modality5_train
train['label'] = label_train
valid['id'] = id_val
valid['modality_1'] = modality1_val
valid['modality_2'] = modality2_val
valid['modality_3'] = modality3_val
valid['modality_4'] = modality4_val
valid['modality_5'] = modality5_val
valid['label'] = label_val
test['id'] = id_test
test['modality_1'] = modality1_test
test['modality_2'] = modality2_test
test['modality_3'] = modality3_test
test['modality_4'] = modality4_test
test['modality_5'] = modality5_test
test['label'] = label_test
pkl1['train'] = train
pkl1['valid'] = valid
pkl1['test'] = test
pickle.dump(pkl1,pkl)
print('done'+ str(epoch))
return
def MOCAS (array,lenth,modality11,modality21,modality31,modality41,modality51,label1):
for i in range(10):
train1 = []
val_start = int(i*lenth/10)
val_end = test_start = int((i+1)*lenth/10)
test_end = int((i+2)*lenth/10)
final_test = int(0.1*lenth)
if i < 9:
val = array[val_start:val_end]
test = array[test_start:test_end]
else:
val = array[val_start:val_end]
test = array[:final_test]
for k in array:
if k not in np.append(val,test):
train1.append(k)
train = np.array(train1)
pkl1 = open(str(i)+'.pkl','wb')
pkl_make(modality11,modality21,modality31,modality41,modality51,label1,train,val,test,pkl1,i)
return
if __name__ == '__main__':
txt = open('Raw_MOCAS_list.txt','r')
txt1 = txt.readlines()
modality11 = []
modality21 = []
modality31 = []
modality41 = []
modality51 = []
label1 = []
for i in txt1:
k = i.rstrip('\n')
print(k)
csv1 = open(k,'r')
csv2 = csv.reader(csv1)
modality1_data,modality2_data,modality3_data,modality4_data,modality5_data,label_data,csv_len = data(csv2)
modality11.extend(modality1_data)
modality21.extend(modality2_data)
modality31.extend(modality3_data)
modality41.extend(modality4_data)
modality51.extend(modality5_data)
label1.extend(label_data)
csv1.close()
indices = np.arange(len(modality11))
np.random.shuffle(indices)
MOCAS(indices,indices.shape[0],modality11,modality21,modality31,modality41,modality51,label1)