-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathalgos.js
683 lines (570 loc) · 19.2 KB
/
algos.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////// SORTING ALGORITHMS ///////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// g(n) = n^2
// f(n) < O(n^2); => We have constant 'k' which makes k*n^2 always bigger than f(n) for any value of n > n0. e.g. 2n^2 + 2n < 3n^2
// simply, O(n^2) will always go over f(n) after a certain value of n
// Bubble Sort: Hello world of sorting algorithms.
// Loop through array while keeping an eye on current and next element
// Swap the two whenever current one is bigger until you reach the end
// keep repeating this process until no swap is done in a loop
async function bubbleSort(arr, draw_arr) {
const n = arr.length;
let _c = 0;
let swapped = false;
do {
swapped = false;
for (let j = 0; j < n - 1; j++) {
if (arr[j + 1] < arr[j]) {
swap(arr, j + 1, j);
swapped = true;
await draw_arr(arr, 3, j + 1, j);
}
await draw_arr(arr, 2);
_c++;
}
await draw_arr(arr, 1);
} while (swapped == true);
console.log(`bubblesort ${x} -> ${_c}`);
return arr;
}
// Cocktail Sort: bubble sort bouncing back and forth.
// Same as bubble sort, instead of looping from the start every time,
// when it reaches the end, it starts the loop from the end swapping in
// reverse.
async function cocktailSort(arr, draw_arr) {
const n = arr.length;
let _c = 0;
let swapped = false;
do {
swapped = false;
for (let j = 0; j < n - 1; j++) {
if (arr[j + 1] < arr[j]) {
swap(arr, j + 1, j);
swapped = true;
await draw_arr(arr, 3, j + 1, j);
}
_c++;
await draw_arr(arr, 2);
}
if (!swapped)
break;
for (let j = n - 1; j >= 0; j--) {
if (arr[j + 1] < arr[j]) {
swap(arr, j + 1, j);
swapped = true;
await draw_arr(arr, 3, j + 1, j);
}
_c++;
await draw_arr(arr, 2);
}
await draw_arr(arr, 1);
} while (swapped == true);
console.log(`cocktail sort ${_c}`);
return arr;
}
// Insertion Sort: Pick an item, and loop back to first item while swapping
// where required, like bubble sort backwards each iteration.
// Pick next element and repeat til end of array.
async function insertionSort(arr, draw_arr) {
const n = arr.length;
let _c = 0;
for (let i = 1; i < n; i++) { // start from second elmeent
for (let j = i; j >= 1; j--) { // loop to move back to zero
if (arr[j - 1] > arr[j]) { // while swapping
swap(arr, j - 1, j);
await draw_arr(arr, 3, j - 1, j);
}
_c++;
await draw_arr(arr, 2);
}
await draw_arr(arr, 1);
}
}
// Gnome Sort (Stupid Sort): An upgrade to insertion sort
// Unlike insertion sort, which even after correctly positioning the selected
// item still runs upto first item, Gnome Sort skips those comparisons and
// picks the next item to sort.
async function gnomeSort(arr, draw_arr) {
const n = arr.length;
let _c = 0;
let pos = 0; // start from first index
while (pos < n) {
if (pos == 0 || arr[pos - 1] < arr[pos]) {
pos++; // if it is in correct position w.r.t. previous item, move forward
} else {
swap(arr, pos, pos - 1); // otherwise, swap it with previous item
await draw_arr(arr, 3, pos, pos - 1);
pos--; // and move back
}
await draw_arr(arr, 1);
await draw_arr(arr, 2);
_c++;
}
console.log(`gnome sort ${_c}`);
return arr;
}
// Comb Sort: A Bubble Sort with varying swap items distance
// Bubble sort always swap adjacent items, while Comb Sort starts swapping very
// distant items and gradually narrows the distance on each iteration. This
// also increases the comparisons on each iteration.
async function combSort(arr, draw_arr) {
const n = arr.length;
let gap = arr.length;
const shrink = 1.3; // 1.3 is considered ideal shrink factors by authors
let _c = 0;
let _s = 0;
let sorted = false;
while (!sorted) { // a bubble sort like check
gap = Math.floor(gap / shrink); // set the distance based on shrink factor
if (gap > 1) {
sorted = false;
} else {
gap = 1;
sorted = true;
}
for (let i = 0; i + gap < n; i++) { // start looping from item near list end
// await sleepHighlight(data, i, i+gap);
if (arr[i] > arr[i + gap]) { // comparisons will increase with gap decreasing on each iteration
swap(arr, i, i + gap);
sorted = false;
_s++;
await draw_arr(arr, 3, i, i + gap);
}
await draw_arr(arr, 2, i, i + gap);
_c++;
}
await draw_arr(arr, 1);
}
console.log(`comb sort ${_c}`);
return arr;
}
// Shell Sort: Applies gapping method (as in comb sort) on insertion sort
//
async function shellSort(arr, draw_wait) {
const n = arr.length;
const gaps = [7501, 701, 301, 132, 57, 23, 10, 4, 1]; // most optimized gap sequence
let _c = 0, _c2 = 0;
for (let g = 0; g < gaps.length; g++) {
const gap = gaps[g];
for (let i = gap; i < n; i++) { // select a gap value within list, and loop upto last element in list
const temp = arr[i]; // pick element on that position
let j = i
while (j >= gap && arr[j - gap] > temp) {
arr[j] = arr[j - gap];
await draw_wait(arr, 3, j);
j -= gap;
_c++;
}
arr[j] = temp;
await draw_wait(arr, 3, j);
_c2++;
await draw_wait(arr, 2);
}
await draw_wait(arr, 1);
}
console.log(`shellsort ${_c + _c2}`);
}
// Selection Sort: A simple algorithm like bubble sort
// start from first item and iterate through remaining list to find a
// smaller item when found, swap with it and move to next position and
// repeat the process
async function selectionSort(arr, draw_arr) {
const n = arr.length;
let _c = 0;
let imin = 0;
for (let j = 0; j < n - 1; ++j) {
imin = j;
for (let i = j + 1; i < n; ++i) { // loop to find minimum
if (arr[imin] > arr[i]) {
imin = i;
await draw_arr(arr, 3, imin);
}
_c++;
}
if (imin != j) { // swap with newly found minimum
swap(arr, imin, j);
await draw_arr(arr, 3, j, imin);
}
await draw_arr(arr, 2);
await draw_arr(arr, 1);
}
}
// Merge Sort: Basic divide and conquer. Split an array recursively until it can not be further divided.
// Sorting happens on merge. Splitted arrays are merge in a way so that final array is sorted. This
// goes on until all pieces are merged making on sorted array.
async function mergeSort(arr, draw_arr) {
const n = arr.length;
let _c = 0;
const split = async function (arr, i1, i2) {
if (i2 == i1)
return;
const m = Math.floor((i1 + i2) / 2);
await split(arr, i1, m);
await split(arr, m + 1, i2);
await merge(arr, i1, m, m + 1, i2);
await draw_arr(arr, 1);
};
const merge = async function (arr, i1, i2, j1, j2) {
const a1 = arr.slice(i1, i2 + 1);
const a2 = arr.slice(j1, j2 + 1);
let i = 0, j = 0, k = i1;
while (k <= j2) {
if (i >= a1.length) {
arr[k] = a2[j];
j++;
}
else if (j >= a2.length) {
arr[k] = a1[i];
i++;
}
else if (a1[i] < a2[j]) {
arr[k] = a1[i];
i++;
} else {
arr[k] = a2[j];
j++;
}
await draw_arr(arr, 3, k);
k++;
}
await draw_arr(arr, 2);
};
split(arr, 0, arr.length - 1);
}
// Merge Sort Parallel: Same as original, both branches of split work on different data, they are only made
// to run in parallel instead of one after another.
async function parallelMergeSort(arr, draw_arr) {
const n = arr.length;
let _c = 0;
const split = async function (_arr, i1, i2) {
if (i2 == i1)
return;
const m = Math.floor((i1 + i2) / 2);
let s1 = split(_arr, i1, m);
let s2 = split(_arr, m + 1, i2);
await s1; await s2;
await merge(_arr, i1, m, m + 1, i2);
await draw_arr(_arr, 1);
};
const merge = async function (_arr, i1, i2, j1, j2) {
const a1 = _arr.slice(i1, i2 + 1);
const a2 = _arr.slice(j1, j2 + 1);
let i = 0, j = 0, k = i1;
while (k <= j2) {
if (i >= a1.length) {
_arr[k] = a2[j];
j++;
}
else if (j >= a2.length) {
_arr[k] = a1[i];
i++;
}
else if (a1[i] < a2[j]) {
_arr[k] = a1[i];
i++;
} else {
_arr[k] = a2[j];
j++;
}
await draw_arr(_arr, 3, k);
k++;
}
await draw_arr(_arr, 2);
};
await split(arr, 0, arr.length - 1);
}
// Radix Sort: Sort without comparisons, the weird one
// put items in buckets based on their last digits, then empty the buckets
// back on the list. do it again for second last digit. after going
// through all digits list will be sorted
async function radixSort(arr, draw_arr) {
const n = arr.length;
let _c = 0;
const getDigit = (number, index) => Math.floor(Math.abs(number) / Math.pow(10, index)) % 10;
const countDigits = (number) => Math.floor(Math.log10(Math.abs(number))) + 1;
let maxDigits = 0;
for (let i = 0; i < n; i++) {
let d = countDigits(arr[i]);
maxDigits = d > maxDigits ? d : maxDigits;
}
// init 2d array
let buckets = [];
while (buckets.push([]) < 10);
for (let di = 0; di < maxDigits; di++) {
// pick each number, and put it in bucket matching its selected digit
for (let j = 0; j < n; j++) {
const d = getDigit(arr[j], di);
buckets[d].push(arr[j]);
}
// empty all buckets one by one into the original array
let i = 0;
for (let j = 0; j < n; j++) {
while (buckets[j] != undefined && buckets[j].length > 0) {
arr[i] = buckets[j].shift();
await draw_arr(arr, 3, i);
i++;
}
await draw_arr(arr, 2);
await draw_arr(arr, 1);
}
}
}
// Bucket Sort: Almost same as Radix.
// TODO
async function bucketSort(arr) {
}
// TODO
async function countingSort(arr) {
}
// Quick Sort: Put all smaller and all greater items on left and right of a selected pivot in any order.
// Start by selecting right most as pivot. Compare with first item, if bigger, move
// it to right side of pivot by shifting pivot to left. Continue moving right and shifting
// pivot to left until all bigger items are on its right. Repate on left and right sides of pivot.
async function quickSort(arr, draw_arr) {
let _c = 0;
await sort(arr, 0, arr.length - 1);
async function sort(arr, lo, hi) {
if (lo < hi) {
const p = await sortPartition(arr, lo, hi);
await sort(arr, lo, p - 1);
await sort(arr, p + 1, hi);
}
}
async function sortPartition(arr, lo, hi) {
const pivot = arr[hi];
let pi = hi;
let i = lo;
while (i <= pi - 1) {
if (arr[i] > pivot) {
swap(arr, i, pi - 1);
swap(arr, pi - 1, pi);
await draw_arr(arr, 3, i, pi, pi - 1);
pi = pi - 1;
} else {
i++;
}
await draw_arr(arr, 2);
_c++;
}
await draw_arr(arr, 1);
//arr[pi] = pivot;
// let i = lo;
// for(let j = lo; j <= hi - 1; j++) {
// if(arr[j] < pivot) {
// if(i != j) {
// swap(arr, i, j);
// await draw_arr(arr);
// }
// i++;
// }
// _c++;
// }
// swap(arr, i, hi);
// await draw_arr(arr);
return pi;
}
console.log(`quicksort ${_c}`);
}
// Odd-Even Sort: This is for parallel processors, a modification of bubble sort.
// Too loops, one for even indexes, one for odd.
async function oddEvenSort(arr, draw_arr) {
const n = arr.length;
let _c = 0;
let swapped = false;
do {
swapped = false;
for (let j = 0; j < n - 1; j += 2) {
if (arr[j] > arr[j + 1]) {
swap(arr, j + 1, j);
swapped = true;
await draw_arr(arr, 3, j + 1, j);
}
_c++;
await draw_arr(arr, 2);
}
for (let j = 1; j < n - 1; j += 2) {
if (arr[j] > arr[j + 1]) {
swap(arr, j + 1, j);
swapped = true;
await draw_arr(arr, 3, j + 1, j);
}
_c++;
await draw_arr(arr, 2);
}
// await oddeven();
// let e = even();
// let o = odd();
// let c = await o;
// let d = await e;
await draw_arr(arr, 1);
} while (swapped == true);
async function oddeven(){
odd();
even();
}
async function odd(){
for (let j = 1; j < n - 1; j += 2) {
if (arr[j] > arr[j + 1]) {
swap(arr, j + 1, j);
swapped = true;
await draw_arr(arr, 3, j + 1, j);
}
_c++;
await draw_arr(arr, 2);
}
}
async function even(){
for (let j = 0; j < n - 1; j += 2) {
if (arr[j] > arr[j + 1]) {
swap(arr, j + 1, j);
swapped = true;
await draw_arr(arr, 3, j + 1, j);
}
_c++;
await draw_arr(arr, 2);
}
}
console.log(`odd-even sort ${_c}`);
return arr;
}
async function oddEvenSort2(arr, draw_arr) {
const n = arr.length;
let swapped = false;
let _c = 0;
let k = 7;
while (k-- > 1)
do {
//console.log(k);
swapped = false;
for (let i = 0; i < k; i++) {
for (let j = i; j < n - 1; j += k) {
if (arr[j] > arr[j + k]) {
swap(arr, j + k, j);
swapped = true;
await draw_arr(arr, 3, j + k, j);
}
_c++;
await draw_arr(arr, 2);
}
}
await draw_arr(arr, 1);
} while (swapped == true);
console.log(`odd-even sort2 ${_c}`);
return arr;
}
// Cycle Sort: Take each item one by one and only write it on its correct position.
// Least number of write operations but O(n^2).
async function cycleSort(arr, draw_arr) {
const n = arr.length;
let _w = 0;
let _c = 0;
for (let cycleStart = 0; cycleStart < n - 1; cycleStart++) {
let item = arr[cycleStart];
let pos = cycleStart;
for (let i = cycleStart + 1; i < n; i++) {
if (arr[i] < item) {
pos++;
}
_c++;
}
if (pos === cycleStart) {
continue;
}
while (item === arr[pos]) {
pos++;
}
let t = arr[pos];
arr[pos] = item;
item = t;
// [arr[pos], item] = [item, arr[pos]];
await draw_arr(arr, 3, pos);
_w += 1;
while (pos != cycleStart) {
pos = cycleStart;
for (let i = cycleStart + 1; i < n; i++) {
if (arr[i] < item) {
pos++;
}
}
while (item === arr[pos]) {
pos++;
}
let tt = arr[pos];
arr[pos] = item;
item = tt;
_w++;
await draw_arr(arr, 3, pos);
}
await draw_arr(arr, 2);
await draw_arr(arr, 1);
}
console.log(`cyclesort ${_w}`);
return {_c, x};
}
// TODO
async function pigeonholeSort(arr) {
}
// TODO
async function introSort(arr) {
const n = arr.length;
function sort(arr, maxDepth) {
}
}
async function heapSort(arr, draw_arr) {
const n = arr.length;
const iParent = (i) => Math.floor((i - 1) / 2);
const iLeftChild = (i) => 2 * i + 1;
const iRightChild = (i) => 2 * i + 2;
async function maxheapify(arr, i, max) {
let parent;
while (i < max) {
parent = i;
const leftChild = iLeftChild(parent);
const rightChild = iRightChild(parent);
if (leftChild < max && arr[leftChild] > arr[parent]) {
parent = leftChild;
}
if (rightChild < max && arr[rightChild] > arr[parent]) {
parent = rightChild;
}
// if neither left or right child is bigger, end
if (parent == i) {
return;
}
swap(arr, parent, i);
await draw_arr(arr, 3, parent, i);
i = parent;
}
}
function verifyHeap(arr) {
for (let i = 0; i < arr.length; i++) {
if (arr[i] < arr[iLeftChild(i)] || arr[i] < arr[iRightChild(i)]) {
console.log("heap is incorrect at ", i);
console.log(arr);
return;
}
}
console.log("heap is correct");
}
async function buildMaxHeap(arr) {
var i = Math.floor(arr.length / 2 - 1); //iParent(arr.length - 1);
while (i >= 0) {
await maxheapify(arr, i, arr.length);
i--;
}
}
await buildMaxHeap(arr);
let last = n - 1; // last and first of a heap are always min and max of array
while (last > 0) {
swap(arr, 0, last);// put max on end of array and re-heap the remaining array
await draw_arr(arr, 3, 0, last);
await maxheapify(arr, 0, last);
await draw_arr(arr, 2);
await draw_arr(arr, 1);
last--;
}
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////// END SORTING ALGORITHMS //////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////