-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
52 lines (42 loc) · 1.49 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import os
# Ultra-Fine-Grained Datasets roots
# TODO change datasets root
Root = "/your_ugvc_dataset_root"
SoyAgeingRoot = os.path.join(Root, "SoyAgeing")
UltraRoot = {
"SoyAgeing-R1": os.path.join(SoyAgeingRoot, "SoyAgeing-R1/R1"),
"SoyAgeing-R3": os.path.join(SoyAgeingRoot, "SoyAgeing-R3/R3"),
"SoyAgeing-R4": os.path.join(SoyAgeingRoot, "SoyAgeing-R4/R4"),
"SoyAgeing-R5": os.path.join(SoyAgeingRoot, "SoyAgeing-R5/R5"),
"SoyAgeing-R6": os.path.join(SoyAgeingRoot, "SoyAgeing-R6/R6"),
"SoyGene": os.path.join(Root, "SoyGene/soybeangene"),
"SoyGlobal": os.path.join(Root, "SoyGlobal/soybean2000"),
"SoyLocal": os.path.join(Root, "SoyLocal/soybean200"),
"Cotton": os.path.join(Root, "Cotton80/COTTON"),
}
# Data augment configs
image_size = 448
crop_pct = 0.875
interpolation = 3
trans_type = "imagenet"
n_views = 2
# Model configs
num_proxy_base = 1 # number of base proxies per classes
num_proxy_hard = None # number of hard proxies per classes
num_proxy_local = 0
mlp_out_dim = 256 # MLP head project dimension
sk_num_iter = 3 # number of Sinkhorn-knopp iters
sk_epsilon = 0.05 # epsilon of Sinkhorn-knopp
# Dataset config
prop_train_labels = 0.5
# Experiment config
temperature = 0.1
# DINO
dino_pretrain_path = "./your_dino_pretrained_path"
# OSR Split dir
osr_split_dir = "/your_osr_split_root"
cifar_10_root = "/your_cifar10_root"
cifar_100_root = "/your_cifar100_root"
cub_root = "/your_cub_root"
aircraft_root = "/your_aircraft_root"
scars_root = "/your_scars_root"