|
| 1 | +I'll help you with each of these questions: |
| 2 | + |
| 3 | +Creating and Testing a RAG System on AWS: |
| 4 | + |
| 5 | +Here's a high-level approach to create a RAG system on AWS: [1] |
| 6 | + |
| 7 | +# Basic RAG Implementation using Amazon Bedrock and Knowledge Bases |
| 8 | +import boto3 |
| 9 | +from langchain.retrievers import AmazonKnowledgeBasesRetriever |
| 10 | +from langchain.chains import RetrievalQA |
| 11 | + |
| 12 | +# Initialize Bedrock client |
| 13 | +bedrock = boto3.client('bedrock-runtime') |
| 14 | + |
| 15 | +# Set up knowledge base retriever |
| 16 | +retriever = AmazonKnowledgeBasesRetriever( |
| 17 | + knowledge_base_id="your_kb_id", |
| 18 | + region_name="your_region" |
| 19 | +) |
| 20 | + |
| 21 | +# Create RAG chain |
| 22 | +rag_chain = RetrievalQA.from_chain_type( |
| 23 | + llm=bedrock, |
| 24 | + chain_type="stuff", |
| 25 | + retriever=retriever |
| 26 | +) |
| 27 | + |
| 28 | +# Query the system |
| 29 | +response = rag_chain.run("Your question here") |
| 30 | + |
| 31 | +Copy |
| 32 | + |
| 33 | +Insert at cursor |
| 34 | +python |
| 35 | +Key components to implement: |
| 36 | + |
| 37 | +Document ingestion and preprocessing |
| 38 | + |
| 39 | +Vector store setup (can use Amazon OpenSearch) |
| 40 | + |
| 41 | +Embedding model selection (like Amazon Titan Embeddings) |
| 42 | + |
| 43 | +LLM integration (via Amazon Bedrock) |
| 44 | + |
| 45 | +Query processing and response generation |
| 46 | + |
| 47 | +Key Features of Amazon SageMaker for Data Science Workflows: [2] |
| 48 | + |
| 49 | +Development Features: |
| 50 | + |
| 51 | +Notebook Instances for interactive development |
| 52 | + |
| 53 | +Built-in algorithms and frameworks |
| 54 | + |
| 55 | +Automated ML with SageMaker Autopilot |
| 56 | + |
| 57 | +Distributed training support |
| 58 | + |
| 59 | +Data Processing: |
| 60 | + |
| 61 | +Data labeling capabilities |
| 62 | + |
| 63 | +Feature Store for feature management |
| 64 | + |
| 65 | +Processing jobs for data transformation |
| 66 | + |
| 67 | +Built-in data preprocessing |
| 68 | + |
| 69 | +Model Management: |
| 70 | + |
| 71 | +Model training and tuning |
| 72 | + |
| 73 | +Automated hyperparameter optimization |
| 74 | + |
| 75 | +Model deployment and hosting |
| 76 | + |
| 77 | +A/B testing capabilities |
| 78 | + |
| 79 | +Example of a basic SageMaker training setup: |
| 80 | + |
| 81 | +import sagemaker |
| 82 | +from sagemaker.estimator import Estimator |
| 83 | + |
| 84 | +# Initialize SageMaker session |
| 85 | +session = sagemaker.Session() |
| 86 | + |
| 87 | +# Create estimator |
| 88 | +estimator = Estimator( |
| 89 | + image_uri='your-training-image', |
| 90 | + role='your-iam-role', |
| 91 | + instance_count=1, |
| 92 | + instance_type='ml.m5.xlarge', |
| 93 | + output_path='s3://your-output-path' |
| 94 | +) |
| 95 | + |
| 96 | +# Start training |
| 97 | +estimator.fit({'training': 's3://your-training-data'}) |
| 98 | + |
| 99 | +Copy |
| 100 | + |
| 101 | +Insert at cursor |
| 102 | +python |
| 103 | +Configuring Auto Scaling for EC2 Instances: |
| 104 | + |
| 105 | +Here's how to set up Auto Scaling using AWS SDK: |
| 106 | + |
| 107 | +import boto3 |
| 108 | + |
| 109 | +# Create Auto Scaling client |
| 110 | +autoscaling = boto3.client('autoscaling') |
| 111 | + |
| 112 | +# Create Auto Scaling group |
| 113 | +response = autoscaling.create_auto_scaling_group( |
| 114 | + AutoScalingGroupName='my-asg', |
| 115 | + LaunchTemplate={ |
| 116 | + 'LaunchTemplateId': 'lt-1234567890', |
| 117 | + 'Version': '$Latest' |
| 118 | + }, |
| 119 | + MinSize=1, |
| 120 | + MaxSize=5, |
| 121 | + DesiredCapacity=2, |
| 122 | + VPCZoneIdentifier='subnet-1234567,subnet-7654321' |
| 123 | +) |
| 124 | + |
| 125 | +# Configure scaling policy |
| 126 | +response = autoscaling.put_scaling_policy( |
| 127 | + AutoScalingGroupName='my-asg', |
| 128 | + PolicyName='cpu-policy', |
| 129 | + PolicyType='TargetTrackingScaling', |
| 130 | + TargetTrackingConfiguration={ |
| 131 | + 'TargetValue': 70.0, |
| 132 | + 'PredefinedMetricSpecification': { |
| 133 | + 'PredefinedMetricType': 'ASGAverageCPUUtilization' |
| 134 | + } |
| 135 | + } |
| 136 | +) |
| 137 | + |
| 138 | +Copy |
| 139 | + |
| 140 | +Insert at cursor |
| 141 | +python |
| 142 | +Key Auto Scaling components: |
| 143 | + |
| 144 | +Launch Templates/Configurations |
| 145 | + |
| 146 | +Auto Scaling Groups |
| 147 | + |
| 148 | +Scaling Policies (Target tracking, Step scaling, Simple scaling) |
| 149 | + |
| 150 | +CloudWatch Alarms for triggering scaling actions |
| 151 | + |
| 152 | +Cooldown periods and scaling thresholds |
| 153 | + |
| 154 | +Best practices: |
| 155 | + |
| 156 | +Use target tracking policies when possible |
| 157 | + |
| 158 | +Set appropriate minimum and maximum instance counts |
| 159 | + |
| 160 | +Configure proper health checks |
| 161 | + |
| 162 | +Use multiple Availability Zones |
| 163 | + |
| 164 | +Implement gradual scaling with appropriate cooldown periods |
| 165 | + |
| 166 | +Remember to always follow AWS security best practices and use appropriate IAM roles and permissions when implementing these solutions. |
0 commit comments