diff --git a/README.md b/README.md index 923916b..e39bedb 100644 --- a/README.md +++ b/README.md @@ -13,13 +13,22 @@ The full paper is available at: [https://arxiv.org/abs/1903.11800](https://arxiv Check [INSTALL.md](INSTALL.md) for installation instructions. ## Trained model -We provide trained model on ICDAR 2017 MLT dataset, check [here](https://drive.google.com/open?id=1kh5wXqvD1KkaSLtyEG8RUDUfSK1CHnQT) for downloading. Note that the result is slightly different from we reported in the paper, because PMTD is based on a private codebase, we reimplement inference code based on [maskrcnn-benchmark](https://github.com/facebookresearch/maskrcnn-benchmark). +We provide trained model on ICDAR 2017 MLT dataset [here](https://drive.google.com/open?id=1kh5wXqvD1KkaSLtyEG8RUDUfSK1CHnQT) and ICDAR 2015 dataset [here](https://drive.google.com/open?id=1hI6uDaUefCrD1oYoKMdflTY6Ocl2Y46-) for downloading. Note that the result is slightly different from we reported in the paper, because PMTD is based on a private codebase, we reimplement inference code based on [maskrcnn-benchmark](https://github.com/facebookresearch/maskrcnn-benchmark). -Method|Precision| Recall| F-measure +ICDAR 2017 + +Method|Precision| Recall| F-measure ---|---|---|--- -This project|85.13%|72.85%| 78.51% +This project|85.13%|72.85%| 78.51% Paper reported|85.15%| 72.77%| 78.48% +ICDAR 2015 + +Method|Precision| Recall| F-measure +---|---|---|--- +This project|87.48%|91.26%| 89.33% +Paper reported|87.43%| 91.30%| 89.33% + ## A quick demo ```bash @@ -57,7 +66,7 @@ python demo/utils/generate_icdar2017.py In the test stage, we use one GPU of TITANX 11G with a batch size 4. When encountering the out-of-memory (OOM) error, you may need to modify TEST.IMS_PER_BATCH in `configs/e2e_PMTD_R_50_FPN_1x_test.yaml`. ```bash # the download model should place in the path: models/PMTD_ICDAR2017MLT.pth -python tools/test_net.py --config=configs/e2e_PMTD_R_50_FPN_1x_test.yaml +python tools/test_net.py --config=configs/e2e_PMTD_R_50_FPN_1x_ICDAR2017MLT_test.yaml # results will output to PROJECT_ROOT/inference/icdar_2017_mlt_test/ # - bbox.json // when using coco evaluation criterion # - segm.json // when using coco evaluation criterion