-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTEOS10_runoff_tracking.tex
55 lines (40 loc) · 1.71 KB
/
TEOS10_runoff_tracking.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
\documentclass{article}
\usepackage{fullpage}
\usepackage[top=2.1cm, bottom=2.1cm, left=1cm, right=1cm]{geometry}
\begin{document}
\section*{Runoffs}
\subsection*{sbcrnf.F90}
From sbc\_rnf, read the runoff temperature into sf\_t\_rnf:
\begin{verbatim}
IF( ln_rnf_tem ) CALL fld_read ( kt, nn_fsbc, sf_t_rnf ) ! idem for runoffs temperature if required
\end{verbatim}
Set the ``heat''=t*waterflux added into rnf\_tsc:
\begin{verbatim}
IF( ln_rnf_tem ) THEN ! use runoffs temperature data
rnf_tsc(:,:,jp_tem) = ( sf_t_rnf(1)%fnow(:,:,1) ) * rnf(:,:) * r1_rau0
\end{verbatim}
\subsection*{trasbc}
Add the ``heat'' to the temperature trend and distribute it in depth according to h\_rnh
\begin{verbatim}
tsa(ji,jj,jk,jp_tem) = tsa(ji,jj,jk,jp_tem) &
& + ( rnf_tsc_b(ji,jj,jp_tem) + rnf_tsc(ji,jj,jp_tem) ) * zdep
\end{verbatim}
\subsection*{tranxt}
Include in the Asselin filter.
\section*{Sensible/LW Heat Flux}
\subsection*{sbcssm.F90}
In sbc\_oce, sst\_m is calculated from tsn using eos\_pt\_from\_ct if necessary:
\begin{verbatim}
zts(ji,jj,jp_tem) = tsn(ji,jj,mikt(ji,jj),jp_tem)
...
IF( ln_useCT ) THEN ; sst_m(:,:) = eos_pt_from_ct( zts(:,:,jp_tem), zts(:,:,jp_sal) )
\end{verbatim}
\subsection*{sbcblk\_core.F90}
Then this sst\_m passed through sbc\_blk\_core as pst and used in blk\_oce\_core to calculate qns e.g.
\begin{verbatim}
zst(:,:) = pst(:,:) + rt0 ! convert SST from Celcius to Kelvin (and set minimum value far above 0 K)
...
zqlw(:,:) = (sf(jp_qlw)%fnow(:,:,1) - Stef * zst(:,:)*zst(:,:)*zst(:,:)*zst(:,:) ) * tmask(:,:,1) ! Long Wave
\end{verbatim}
So, river runoffs need to be in Conservative Temperature.
\end{document}