-
Notifications
You must be signed in to change notification settings - Fork 0
/
README.html
1726 lines (1724 loc) · 705 KB
/
README.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!doctype html>
<html>
<head>
<meta charset="utf-8">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/github-markdown-css/4.0.0/github-markdown.min.css">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/gh/highlightjs/cdn-release/build/styles/default.min.css">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex/dist/katex.min.css">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/markdown-it-texmath/css/texmath.min.css">
<link rel="stylesheet" href="file:///c:\Users\legion\.vscode\extensions\goessner.mdmath-2.7.4\themes\default\style.css">
</head>
<body class="markdown-body">
<div dir="auto" ></div>
<!-- [text]() [text](.obsidian/themes/Catppuccin/manifest.json) -->
<div dir="auto" ></div>
<link rel="stylesheet" type="text/css" href=".obsidian/themes/Catppuccin/theme.css">
<h1 dir="auto" id="math-journey">math-Journey</h1>
<p dir="auto">我的数学学习之路,基于<a href="https://math.mit.edu/academics/undergrad/roadmaps.html">MIT Roadmaps</a>,教材选择参考 <a href="https://math.stackexchange.com/">Math.stackexchange</a> 以及<a href="http://www.cargalmathbooks.com/">cargalmathbooks</a></p>
<h2 dir="auto" id="%E6%95%B0%E5%AD%A6%E5%9F%BA%E7%A1%80%E9%80%9F%E9%80%9A">数学基础速通</h2>
<ul class="contains-task-list code-line" dir="auto">
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox" checked=""type="checkbox"> 基础微积分
<blockquote dir="auto">
<p dir="auto">Ron Larson 的课本对于第 9 章和第 15 章,有的地方讲解的不是很清楚。因为像托马斯微积分那样穿插了大量的习题,导致整体思路的紧凑性和连贯性下降。而且因为 Ron Larson 这本只是一本普通的微积分教材,它没有涉及到分析学,因此很多地方是知其然而不知其所以然。
对于第 9 章级数收敛,以及幂级数与函数的联系方面,读者并不了解这个收敛不收敛到底有什么用,对于如何寻找一个函数的幂级数表达式也是非常的含糊。因此有兴趣深入学习的读者,需要参考网络上其他的资料,或者数学分析课本。
在第 15 章中,作者在还没有讲清楚旋度和散度的含义的情况下,直接将公式摔在了你的脸上。按理说应该先介绍线积分,然后讲解旋度和散度的意义和公式,推广到格林定理,讲解面积分,再从格林定理延伸到高斯散度定理和斯托克斯公式。但是课本并没有介绍旋度和散度的意义,或者说介绍的非常粗浅,难以让读者有一个感性的认识。对于格林公式和散度定理以及斯托克斯公式之间的联系,也并没有讲的太清楚。只是在讲解完格林公式以后稍稍的进行了一下格林公式在三维空间中的推广,然后就没有了下文。
此外,在第 10 章中,作者使用了大量的篇幅讲解几个圆锥曲线,并且提供了大量的图,和几个圆锥曲线的相关计算。我不否认圆锥曲线重要,但是我认为作者安排的圆锥曲线计算和画图题目的比例有点过大了。第 10 章中虽然讲解了参数方程和极坐标等,但是其最终本质上还是利用平面直角坐标系中的各种关系在进行近似和代换。</p>
</blockquote>
<ul class="contains-task-list code-line" dir="auto">
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox" checked=""type="checkbox"> <a href="https://www.youtube.com/watch?v=TMWevkxtS9s&list=PLDesaqWTN6ESk16YRmzuJ8f6-rnuy0Ry7&index=30">Calculus 3 Lecture 15.2: How to Find Divergence and Curl of Vector Fields (youtube.com)</a> 学习,后面的习题讲解不用看</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox" checked=""type="checkbox"> <a href="https://www.youtube.com/watch?v=OnyCk62hEL4&list=PLDesaqWTN6ESk16YRmzuJ8f6-rnuy0Ry7&index=33&t=11s">Green's Theorem: Calculus 3 Lecture 15.5 (youtube.com)</a> 学习(这个视频其实讲的没有太好,证明的过程没有给出来,但是这个老师讲课比较平易近人,后面的计算题就不用看了)</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox" checked=""type="checkbox"> <a href="https://www.youtube.com/watch?v=sQ0BJ3H-cZ8&list=PLDesaqWTN6ESk16YRmzuJ8f6-rnuy0Ry7&index=34&pp=iAQB">Surface And Flux Integrals, Parametric Surf., Divergence/Stoke's Theorem: Calculus 3 Lecture 15.6_9 - YouTube</a> 学习(这一节也可以不看,这个老师比较形象的描述了定理,但是给的证明不是特别充足)</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox" checked=""type="checkbox"> <a href="https://tutorial.math.lamar.edu/Classes/CalcII/SeriesIntro.aspx">Calculus II - Series & Sequences (lamar.edu)</a> 这个系列对于级数的讲解非常好,比微积分课本要清晰,可以参考阅读,但是问题也在于中间插入了大量的例题,导致思路连贯性下降(这好像是初等微积分的教材和讲义的特点了)</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox" checked=""type="checkbox"> <a href="https://www.youtube.com/watch?v=3VHol7eosLA">Calculus 2 Lecture 9.8: Representation of Functions by Taylor Series and Maclauren Series (youtube.com)</a> 观看(这个老师对概念讲解的很清楚)</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox" checked=""type="checkbox"> Ron Larson Calculus 课本阅读</li>
</ul>
</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 数学推理入门(Logic, mathematical reasoning/inference/proof)
<ul class="contains-task-list code-line" dir="auto">
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> <a href="https://www.people.vcu.edu/~rhammack/BookOfProof/Main.pdf#page=77">Book of proof</a> 阅读并完成所有习题
<ul class="contains-task-list code-line" dir="auto">
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 集合论与数理逻辑学习</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 有理数定义的来源</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 无理数定义的来源</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 为什么有理数和无理数能够合成整个实数域?</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 无理数和有理数在数轴上怎样分布?</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 笛卡尔积满足结合律吗</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 笛卡尔积对交和并运算满足分配律吗</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> Well ordering Principles 理解</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> Division algorithm 理解</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> Well-ordering principle & Division Algorithm Proof (数论,组合学)</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 集合的定义?一个数本身就是一个集合?</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> Russell’s Paradox 理解?</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> Zermelo-Fraenkel axioms 理解?</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 实现一个命题判断程序+句子改写+命题推理功能 ?</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> modus ponens rule ?</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> modus tolles ?</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> elimination ?</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 其他 3 个推理定律?</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 组合计数学习</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 乘法定理的应用条件</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 概率论学习</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> Preposition logic and set operation 的关系</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 离散数学学习</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 扑克牌算法研究</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox" checked=""type="checkbox"> 为什么 0 的阶乘和 1 的阶乘一样等于 1</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> K-permutation 公式是如何得到的?</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> What is the smallest n for which n! has more than 10 digits?</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> For which values of n does n! have n or fewer digits?</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> determine how many 0’s are at the end of the number 100!.</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> Gamma function and the factorial function</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 数论学习</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 组合学学习</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 组合数计算时的对称性
<ul dir="auto">
<li dir="auto">从组合公式上可以看出,因为分母是 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>k</mi><mo stretchy="false">!</mo></mrow><annotation encoding="application/x-tex">k!</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="mclose">!</span></span></span></span> 和 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo stretchy="false">)</mo><mo stretchy="false">!</mo></mrow><annotation encoding="application/x-tex">(n-k)!</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="mclose">)!</span></span></span></span> 相乘</li>
<li dir="auto">从公式原理上看,从 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">n</span></span></span></span> 个里面选 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span></span></span></span> 个,就等同于从 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">n</span></span></span></span> 个里面选 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mo>−</mo><mi>k</mi></mrow><annotation encoding="application/x-tex">n-k</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span></span></span></span> 个</li>
</ul>
</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 杨辉三角,二项式定理及其相关问题,还有一些其他的相关推论</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 0 的 0 次幂</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> Multiset counting
<ul dir="auto">
<li dir="auto">对于普通的 Multiset 划分,使用插杠法</li>
<li dir="auto">对于多个 mulplicity 的 permutation 计算
<ul dir="auto">
<li dir="auto">将阶乘结果除以各个类别的全排列的连乘</li>
<li dir="auto">或者对每个类别挨个进行组合选择,对组合进行连乘</li>
</ul>
</li>
</ul>
</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> Division principle -> Pigeonhole principle
<ul class="contains-task-list code-line" dir="auto">
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 几何上的应用</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 直接应用</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 与同余定理结合使用,挑选数字</li>
</ul>
</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 同余定理,中国剩余定理(数论)</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 组合证明
<ul dir="auto">
<li dir="auto">代数上的证明</li>
<li dir="auto">利用组合的含义直接理解</li>
<li dir="auto">将两者结合理解</li>
</ul>
</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 基本证明方法
<ul class="contains-task-list code-line" dir="auto">
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> Direct proof
<ul class="contains-task-list code-line" dir="auto">
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 几个关键含义
<ul class="contains-task-list code-line" dir="auto">
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> theorem</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> proof</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> definition
<ul class="contains-task-list code-line" dir="auto">
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> Divides 的定义</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> Prime 素数和 composite 合数的定义</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 最大公约数 gcd</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 最小公倍数 Lcm</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 为什么有些东西没有数学定义?给出一些不需要定义的数学示例(加减乘除之类)</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> Division algorithm 再现</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 唯一分解定理/算数基本定理的证明(每个正整数都仅有一个质数分解方式)</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 直接推理(direct proof),即 if P,then Q 的结构</li>
</ul>
</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> Proposition</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> Lemma</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> Corollary</li>
</ul>
</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> Conditional Statement 直接证明法
<ul class="contains-task-list code-line" dir="auto">
<li dir="auto">原理
<ul dir="auto">
<li dir="auto">我们想要证明的是 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mtext> </mtext><mo>⟹</mo><mtext> </mtext><mi>Q</mi></mrow><annotation encoding="application/x-tex">P\implies{Q}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7073em;vertical-align:-0.024em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⟹</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8778em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal">Q</span></span></span></span></span> 正确</li>
<li dir="auto">根据 <code>if P,then Q</code> 的含义,及真值表的特点来看。如果 <code>P</code> 是 <code>False</code>,那么 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mtext> </mtext><mo>⟹</mo><mtext> </mtext><mi>Q</mi></mrow><annotation encoding="application/x-tex">P\implies{Q}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7073em;vertical-align:-0.024em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⟹</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8778em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal">Q</span></span></span></span></span> 直接就是 <code>True</code> 无需证明;对于 <code>P</code> 是 <code>True</code> 的情况,如果 <code>Q</code> 是 <code>False</code>,那么结果也是 <code>False</code> 了。因此要让 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mtext> </mtext><mo>⟹</mo><mtext> </mtext><mi>Q</mi></mrow><annotation encoding="application/x-tex">P\implies{Q}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7073em;vertical-align:-0.024em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⟹</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8778em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal">Q</span></span></span></span></span> 为 <code>True</code>,我们需要 <code>P</code> 也是 <code>True</code>,<code>Q</code> 也是 <code>True</code>;<code>P</code> 为 <code>True</code> 是已知的,但是 <code>Q</code> 为 <code>True</code> 是不知道的,因此我们想要从 <code>P</code> 为 <code>True</code> 推理出 <code>Q</code> 为 <code>True</code>,最后得出 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mtext> </mtext><mo>⟹</mo><mtext> </mtext><mi>Q</mi></mrow><annotation encoding="application/x-tex">P\implies{Q}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7073em;vertical-align:-0.024em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⟹</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8778em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal">Q</span></span></span></span></span> 的结论</li>
<li dir="auto">因此对于 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mtext> </mtext><mo>⟹</mo><mtext> </mtext><mi>Q</mi></mrow><annotation encoding="application/x-tex">P\implies{Q}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7073em;vertical-align:-0.024em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⟹</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8778em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal">Q</span></span></span></span></span> 的推理,我们的第一步是陈述 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi></mrow><annotation encoding="application/x-tex">P</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span></span></span></span> 为 <code>True</code>,最后一步是陈述 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>Q</mi></mrow><annotation encoding="application/x-tex">Q</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8778em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">Q</span></span></span></span> 为 <code>True</code>,中间的步骤是从 <code>P</code> 到 <code>Q</code> 的推理</li>
</ul>
</li>
<li dir="auto">格式
<ul dir="auto">
<li dir="auto">对于 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mtext> </mtext><mo>⟹</mo><mtext> </mtext><mi>Q</mi></mrow><annotation encoding="application/x-tex">P\implies{Q}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7073em;vertical-align:-0.024em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⟹</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8778em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal">Q</span></span></span></span></span> 的推理,我们的第一步是陈述 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi></mrow><annotation encoding="application/x-tex">P</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span></span></span></span> 为 <code>True</code>,最后一步是陈述 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>Q</mi></mrow><annotation encoding="application/x-tex">Q</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8778em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">Q</span></span></span></span> 为 <code>True</code>,中间的步骤是从 <code>P</code> 到 <code>Q</code> 的推理</li>
<li dir="auto">使用 <code>Proof.</code> 开始证明,最后用一个黑框框结尾</li>
<li dir="auto">可以从定义出发,一步步的推导出来</li>
</ul>
</li>
<li dir="auto">Theorem 验证:多用例测试,对于其中的元素的正负性和是否为 0 进行分别讨论。如果各个条件下结论都成立,那么结论成立。</li>
<li dir="auto">经典例题
<ul dir="auto">
<li dir="auto"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi><mo>=</mo><mi>n</mi></mrow><annotation encoding="application/x-tex">m=n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">m</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">n</span></span></span></span> 的证明(使用 <code>lcm</code>)</li>
<li dir="auto">测试对于任意的 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow><annotation encoding="application/x-tex">n\in{N}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">N</span></span></span></span></span>,都有 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1</mn><mo>+</mo><mo stretchy="false">(</mo><mo>−</mo><mn>1</mn><msup><mo stretchy="false">)</mo><mi>n</mi></msup><mo stretchy="false">(</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">1+(-1)^{n}(2n-1)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">−</span><span class="mord">1</span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6644em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord">2</span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">1</span><span class="mclose">)</span></span></span></span> 是 4 的倍数</li>
<li dir="auto">反过来测试对于 4 的任意倍数 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span></span></span></span>,都存在一个 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">n</span></span></span></span>,使得 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>4</mn><mi>a</mi><mo>=</mo><mn>1</mn><mo>+</mo><mo stretchy="false">(</mo><mo>−</mo><mn>1</mn><msup><mo stretchy="false">)</mo><mi>n</mi></msup><mo stretchy="false">(</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">4a=1+(-1)^{n}(2n-1)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">4</span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">−</span><span class="mord">1</span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6644em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord">2</span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">1</span><span class="mclose">)</span></span></span></span></li>
<li dir="auto">对于多种情况进行考虑,分类讨论即可</li>
<li dir="auto">重复的用例无需交换次序重复测试,只需要添加一段说明文字 <code>Without loss of generality</code> 即可,比如 <code>Without loss of generality, suppose m is even and n is odd</code></li>
<li dir="auto">Suppose a is an integer. If 7 | 4a, then 7 | a.</li>
<li dir="auto">If <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mo>∈</mo><mi>Z</mi></mrow><annotation encoding="application/x-tex">n\in{Z}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">Z</span></span></span></span></span>, then <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mn>3</mn><mi>n</mi><mo>+</mo><mn>4</mn></mrow><annotation encoding="application/x-tex">n^2+3n+4</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8974em;vertical-align:-0.0833em;"></span><span class="mord"><span class="mord mathnormal">n</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">3</span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">4</span></span></span></span> is even.</li>
<li dir="auto">Suppose a,b <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>∈</mo></mrow><annotation encoding="application/x-tex">\in</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mrel">∈</span></span></span></span> N. If gcd(a,b) > 1, then b | a or b is not prime.</li>
<li dir="auto">从 2 n 个元素中选择 n 个元素,证明组合的个数是个偶数(巧妙运用组合的含义和补集的定义)</li>
<li dir="auto">证明 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>c</mi><mo>⋅</mo><mi>g</mi><mi>c</mi><mi>d</mi><mo stretchy="false">(</mo><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo stretchy="false">)</mo><mo>≤</mo><mrow><mi>g</mi><mi>c</mi><mi>d</mi><mo stretchy="false">(</mo><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo stretchy="false">)</mo></mrow></mrow><annotation encoding="application/x-tex">c\cdot gcd(a,b)\le{gcd(a,b)}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4445em;"></span><span class="mord mathnormal">c</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mord mathnormal">c</span><span class="mord mathnormal">d</span><span class="mopen">(</span><span class="mord mathnormal">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">b</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≤</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mord mathnormal">c</span><span class="mord mathnormal">d</span><span class="mopen">(</span><span class="mord mathnormal">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">b</span><span class="mclose">)</span></span></span></span></span></li>
</ul>
</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 素数的定理:素数 p 如果整除 ab,那么要么整除 a,要么整除 b. 证明</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 反证法的使用</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 算术基本定理</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 初等数论</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 整数环上的素数是用不可约定义的</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 带余除法</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 乘积整除 n 那必然有一个因数整除</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 代数几何证明中国剩余定理</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 整数是最小的零特征非零整环</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 证不可约整数一定是素数</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 欧几里得引理及其证明</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 证明一个函数 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>5</mn><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mn>3</mn><mi>n</mi><mo>+</mo><mn>7</mn></mrow><annotation encoding="application/x-tex">5n^2+3n+7</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8974em;vertical-align:-0.0833em;"></span><span class="mord">5</span><span class="mord"><span class="mord mathnormal">n</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">3</span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">7</span></span></span></span> 在 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">n</span></span></span></span> 为整数时,其值都是奇数</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> Lcm 和 gcd 相关证明掌握</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 从 2n 个元素中选出 n 个,得到的结果是个偶数</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 对于 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mtext> </mtext><mo>⟹</mo><mtext> </mtext><mrow><mi>Q</mi><mo>∨</mo><mi>R</mi></mrow></mrow><annotation encoding="application/x-tex">P\implies{Q\lor R}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7073em;vertical-align:-0.024em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⟹</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8778em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal">Q</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∨</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.00773em;">R</span></span></span></span></span> 的推理过程</li>
</ul>
</li>
</ul>
</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 逆否命题推理(<code>Contrapositive</code>)
<ul dir="auto">
<li dir="auto">原理
<ul dir="auto">
<li dir="auto">逆否命题和原命题等价,但是证明时从 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mtext> </mtext><mi>Q</mi></mrow><annotation encoding="application/x-tex">~Q</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8778em;vertical-align:-0.1944em;"></span><span class="mspace nobreak"> </span><span class="mord mathnormal">Q</span></span></span></span> 推导 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mtext> </mtext><mi>P</mi></mrow><annotation encoding="application/x-tex">~P</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mspace nobreak"> </span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span></span></span></span></li>
</ul>
</li>
<li dir="auto">何时使用
<ul dir="auto">
<li dir="auto">部分情况下 <code>Direct proof</code> 比较费劲,需要对式子进行一些变化,找到特定的组合,才能得到结果;而如果使用 <code>Contrapositive proof</code>,思路更加丝滑</li>
<li dir="auto">部分情况下条件和结论中的符号是 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo mathvariant="normal">∉</mo></mrow><annotation encoding="application/x-tex">\notin</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mrel"><span class="mord"><span class="mrel">∈</span></span><span class="mord vbox"><span class="thinbox"><span class="llap"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="inner"><span class="mord"><span class="mord">/</span><span class="mspace" style="margin-right:0.0556em;"></span></span></span><span class="fix"></span></span></span></span></span></span></span></span>、<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>∤</mo></mrow><annotation encoding="application/x-tex">\nmid</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9925em;vertical-align:-0.2514em;"></span><span class="mrel amsrm">∤</span></span></span></span> 以及其他。这样适合使用逆否命题,转化为 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>∈</mo></mrow><annotation encoding="application/x-tex">\in</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mrel">∈</span></span></span></span> 和 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">∣</mi></mrow><annotation encoding="application/x-tex">|</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">∣</span></span></span></span> ,然后进行下一步推导</li>
<li dir="auto">结论的结构比条件的结构更加简单。如证明当 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>n</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">n^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal">n</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span> 是偶数时,<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">n</span></span></span></span> 是偶数。将该题改写为证明当 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">n</span></span></span></span> 是奇数时,<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>n</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">n^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal">n</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span> 是奇数</li>
</ul>
</li>
<li dir="auto">经典例题
<ul dir="auto">
<li dir="auto">证明对于 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>∈</mo><mi>Z</mi></mrow><annotation encoding="application/x-tex">x\in{Z}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">Z</span></span></span></span></span>,如果 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>7</mn><mi>x</mi><mo>+</mo><mn>9</mn></mrow><annotation encoding="application/x-tex">7x+9</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">7</span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">9</span></span></span></span> 是偶数,那么 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span></span></span></span> 是奇数</li>
</ul>
</li>
<li dir="auto">同余(<code>Congruence</code>)
<ul class="contains-task-list code-line" dir="auto">
<li dir="auto">定义为 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>−</mo><mi>b</mi><mi mathvariant="normal">∣</mi><mi>n</mi></mrow><annotation encoding="application/x-tex">a-b | n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">b</span><span class="mord">∣</span><span class="mord mathnormal">n</span></span></span></span>,写作 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>≡</mo><mi>b</mi></mrow><annotation encoding="application/x-tex">a\equiv{b}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4637em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≡</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord"><span class="mord mathnormal">b</span></span></span></span></span>,也就是 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span></span></span></span> 和 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi></mrow><annotation encoding="application/x-tex">b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">b</span></span></span></span> 除以 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">n</span></span></span></span> 的余数相等</li>
<li dir="auto">如果两个数同余,那么他们的平方对 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">n</span></span></span></span> 的余数也相等</li>
<li dir="auto">如果两个数同余,用一个自然数 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>c</mi></mrow><annotation encoding="application/x-tex">c</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">c</span></span></span></span> 与他们相乘,得到的结果对 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">n</span></span></span></span> 的余数也相等</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 同余的相关引理证明</li>
</ul>
</li>
<li dir="auto">一些证明时需要注意的内容
<ul dir="auto">
<li dir="auto">用单词而不是数学符号开头</li>
<li dir="auto">句子开头的字母是大写,而数学符号中对大小写很敏感。这样做能够防止数学符号莫名其妙的变成大写。而且用单词开头,增加了句子的完整性</li>
<li dir="auto">每个句子最后都有一个句号 <code>.</code></li>
<li dir="auto">用英文单词和句子,把数学表达式分隔开,不要让几个数学表达式直接连结在一起</li>
<li dir="auto">不要用错符号,不要把数学符号当成单词插入到句子里面</li>
<li dir="auto">不要插入没有必要的数学符号,也不要在没有必要的时候使用数学符号</li>
<li dir="auto">使用第一人称复数,即 <code>We</code>,<code>Us</code></li>
<li dir="auto">使用比较轻松活泼的语气,读起来比较令人愉快,让读者读起来不那么冰冷</li>
<li dir="auto">解释每个使用的新符号,防止读者跑到前面去找</li>
<li dir="auto">避免使用 <code>it</code> 指代,以免读者不知道它指的是啥</li>
<li dir="auto">使用 <code>Since,Because,as,for,so</code>,下列几种是 <strong><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mtext> </mtext><mo>⟹</mo><mtext> </mtext><mi>Q</mi></mrow><annotation encoding="application/x-tex">P\implies{Q}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7073em;vertical-align:-0.024em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⟹</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8778em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal">Q</span></span></span></span></span> 且 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi></mrow><annotation encoding="application/x-tex">P</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span></span></span></span> 为 <code>True</code>,那么 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>Q</mi></mrow><annotation encoding="application/x-tex">Q</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8778em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">Q</span></span></span></span> 为 <code>True</code></strong> 的一些说法(注意不是 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mtext> </mtext><mo>⟹</mo><mtext> </mtext><mi>Q</mi></mrow><annotation encoding="application/x-tex">P\implies{Q}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7073em;vertical-align:-0.024em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⟹</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8778em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal">Q</span></span></span></span></span>,还要求 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi></mrow><annotation encoding="application/x-tex">P</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span></span></span></span> 为 <code>True</code>)
<ul dir="auto">
<li dir="auto">Q since P</li>
<li dir="auto">Since P, Q</li>
<li dir="auto">Q because P</li>
<li dir="auto">Because P, Q</li>
<li dir="auto">Q, as P</li>
<li dir="auto">Q, for P</li>
<li dir="auto">P, so Q</li>
<li dir="auto">As P, Q</li>
</ul>
</li>
<li dir="auto"><code>Thus,hence,therefore,consequently</code> 接前面的 statement,其后跟一个 statement</li>
<li dir="auto">数学语言越清楚越好,这需要长期的练习,以及多多阅读其他人写的比较好的证明过程</li>
</ul>
</li>
<li dir="auto">经典例题
<ul class="contains-task-list code-line" dir="auto">
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> gcd 相关证明
<ul class="contains-task-list code-line" dir="auto">
<li dir="auto">需要注意的是,<code>gcd</code> 和 <code>lcm</code> 相关的性质证明类似,需要根据其本身特性和两边比较进行解答。比如要证 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi><mo>=</mo><mi>n</mi></mrow><annotation encoding="application/x-tex">m={n}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">m</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord"><span class="mord mathnormal">n</span></span></span></span></span>,我们首先要证明 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi><mo>≥</mo><mi>n</mi></mrow><annotation encoding="application/x-tex">m\ge{n}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7719em;vertical-align:-0.136em;"></span><span class="mord mathnormal">m</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≥</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord"><span class="mord mathnormal">n</span></span></span></span></span>,然后要证明 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi><mo>≤</mo><mi>n</mi></mrow><annotation encoding="application/x-tex">m\le{n}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7719em;vertical-align:-0.136em;"></span><span class="mord mathnormal">m</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≤</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord"><span class="mord mathnormal">n</span></span></span></span></span>,最后才能得出 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi><mo>=</mo><mi>n</mi></mrow><annotation encoding="application/x-tex">m=n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">m</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">n</span></span></span></span> 的结论(<code>math.stackexchange</code> 上好多回答都不是很严谨,没有证明等号两边相等)</li>
<li dir="auto">经典例题
<ul dir="auto">
<li dir="auto">If integers a and b are not both zero, then gcd(a,b) = gcd(a b,b).</li>
<li dir="auto">Suppose the division algorithm applied to a and b yields <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>=</mo><mi>q</mi><mi>b</mi><mo>+</mo><mi>r</mi></mrow><annotation encoding="application/x-tex">a = qb + r</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">q</span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">r</span></span></span></span>. Prove gcd(a,b) = gcd(r,b).</li>
<li dir="auto">If <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>≡</mo><mi>b</mi></mrow><annotation encoding="application/x-tex">a \equiv b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4637em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≡</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">b</span></span></span></span> (mod n), then gcd(a,n) = gcd(b,n).</li>
</ul>
</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 了解一些关于最大公约数的性质和定理</li>
</ul>
</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 组合相关证明:证明当 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mo>=</mo><msup><mn>2</mn><mi>k</mi></msup><mo>−</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">n=2^k-1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.9324em;vertical-align:-0.0833em;"></span><span class="mord"><span class="mord">2</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8491em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span> 时,每个二项式系数都是奇数 (这题不会)</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 因式分解复习(如 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>a</mi><mi>n</mi></msup><mo>+</mo><msup><mi>b</mi><mi>n</mi></msup></mrow><annotation encoding="application/x-tex">a^n+b^n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7477em;vertical-align:-0.0833em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6644em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6644em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span></span></span></span></span></span></span> 和 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>a</mi><mi>n</mi></msup><mo>−</mo><msup><mi>b</mi><mi>n</mi></msup></mrow><annotation encoding="application/x-tex">a^n-b^n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7477em;vertical-align:-0.0833em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6644em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6644em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span></span></span></span></span></span></span>)
<ul dir="auto">
<li dir="auto">相关例题:令 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow><annotation encoding="application/x-tex">n\in{N}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">N</span></span></span></span></span>,证明如果 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mn>2</mn><mi>n</mi></msup><mo>−</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">2^n-1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7477em;vertical-align:-0.0833em;"></span><span class="mord"><span class="mord">2</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6644em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span> 是质数,那么 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">n</span></span></span></span> 是质数(也就相当于证明 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">n</span></span></span></span> 是合数,将 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">n</span></span></span></span> 分解成 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mi>b</mi></mrow><annotation encoding="application/x-tex">ab</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">ab</span></span></span></span>,那么 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mn>2</mn><mrow><mi>a</mi><mi>b</mi></mrow></msup><mo>−</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">2^{ab}-1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9324em;vertical-align:-0.0833em;"></span><span class="mord"><span class="mord">2</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8491em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">ab</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span> 可以继续进行因式分解,因为可以因式分解成多个非 1 数的乘积,因此它是合数)</li>
</ul>
</li>
</ul>
</li>
</ul>
</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 反证法 (<code>Proof by contradiction</code>)
<ul dir="auto">
<li dir="auto">普通形式的反证法,即通过反证法证明一个结论 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi></mrow><annotation encoding="application/x-tex">P</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span></span></span></span> 为真
<ul dir="auto">
<li dir="auto">原理
<ul dir="auto">
<li dir="auto">设结论为假,反向推导出矛盾,以否定这个结论</li>
<li dir="auto">真值表上 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi></mrow><annotation encoding="application/x-tex">P</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span></span></span></span> 的真值和 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">¬</mi><mi>P</mi><mtext> </mtext><mo>⟹</mo><mtext> </mtext><mrow><mi>C</mi><mo>∧</mo><mrow><mi mathvariant="normal">¬</mi><mi>C</mi></mrow></mrow></mrow><annotation encoding="application/x-tex">\lnot P\implies{C\land{\lnot C}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7073em;vertical-align:-0.024em;"></span><span class="mord">¬</span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⟹</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∧</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord">¬</span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span></span></span></span></span></span> 相同
<ul dir="auto">
<li dir="auto">因为 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mtext> </mtext><mo>⟹</mo><mtext> </mtext><mi>Q</mi></mrow><annotation encoding="application/x-tex">P\implies{Q}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7073em;vertical-align:-0.024em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⟹</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8778em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal">Q</span></span></span></span></span> 可以翻译为 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">¬</mi><mi>P</mi><mo>∨</mo><mi>Q</mi></mrow><annotation encoding="application/x-tex">\lnot P\lor Q</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord">¬</span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∨</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8778em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">Q</span></span></span></span></li>
<li dir="auto">因此 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">¬</mi><mi>P</mi><mtext> </mtext><mo>⟹</mo><mtext> </mtext><mrow><mi>C</mi><mo>∧</mo><mi mathvariant="normal">¬</mi><mi>C</mi></mrow></mrow><annotation encoding="application/x-tex">\lnot P\implies{C\land\lnot C}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7073em;vertical-align:-0.024em;"></span><span class="mord">¬</span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⟹</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∧</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord">¬</span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span></span></span></span></span> 可以翻译为 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mo>∨</mo><mo stretchy="false">(</mo><mrow><mi>C</mi><mo>∧</mo><mrow><mi mathvariant="normal">¬</mi><mi>C</mi></mrow></mrow><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">{P}\lor({C\land{\lnot{C}}})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">P</span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∨</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∧</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord">¬</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span></span></span></span><span class="mclose">)</span></span></span></span></li>
<li dir="auto">由于 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>C</mi><mo>∧</mo><mi mathvariant="normal">¬</mi><mi>C</mi></mrow><annotation encoding="application/x-tex">C\land\lnot{C}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∧</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord">¬</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span></span></span></span></span> 永远为 <code>False</code>,因此该项的真值就取决于 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi></mrow><annotation encoding="application/x-tex">P</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span></span></span></span>的真值</li>
<li dir="auto">因此要证明 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi></mrow><annotation encoding="application/x-tex">P</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span></span></span></span> 和证明 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">¬</mi><mi>P</mi><mtext> </mtext><mo>⟹</mo><mtext> </mtext><mrow><mi>C</mi><mo>∧</mo><mi mathvariant="normal">¬</mi><mi>C</mi></mrow></mrow><annotation encoding="application/x-tex">\lnot P\implies{C\land\lnot{C}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7073em;vertical-align:-0.024em;"></span><span class="mord">¬</span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⟹</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∧</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord">¬</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span></span></span></span></span></span> 相同</li>
</ul>
</li>
</ul>
</li>
<li dir="auto">方法:首先写出 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">¬</mi><mi>P</mi></mrow><annotation encoding="application/x-tex">\lnot P</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord">¬</span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span></span></span></span>,然后逐步推导出 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>C</mi><mo>∧</mo><mi mathvariant="normal">¬</mi><mi>C</mi></mrow><annotation encoding="application/x-tex">C\land\lnot{C}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∧</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord">¬</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span></span></span></span></span>。<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">¬</mi><mi>P</mi></mrow><annotation encoding="application/x-tex">\lnot P</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord">¬</span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span></span></span></span> 时第一步,<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>C</mi><mo>∧</mo><mi mathvariant="normal">¬</mi><mi>C</mi></mrow><annotation encoding="application/x-tex">C\land\lnot{C}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∧</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord">¬</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span></span></span></span></span> 是最后一步。<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span></span></span></span> 可能不是命题中的一部分,是某个可以推导出的矛盾点。</li>
<li dir="auto">经典例题
<ul dir="auto">
<li dir="auto">证明 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msqrt><mn>2</mn></msqrt></mrow><annotation encoding="application/x-tex">\sqrt{2}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.04em;vertical-align:-0.1328em;"></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9072em;"><span class="svg-align" style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord" style="padding-left:0.833em;"><span class="mord">2</span></span></span><span style="top:-2.8672em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="min-width:0.853em;height:1.08em;"><svg xmlns="http://www.w3.org/2000/svg" width='400em' height='1.08em' viewBox='0 0 400000 1080' preserveAspectRatio='xMinYMin slice'><path d='M95,702
c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14
c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54
c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10
s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429
c69,-144,104.5,-217.7,106.5,-221
l0 -0
c5.3,-9.3,12,-14,20,-14
H400000v40H845.2724
s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7
c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z
M834 80h400000v40h-400000z'/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.1328em;"><span></span></span></span></span></span></span></span></span> 是无理数
<ul dir="auto">
<li dir="auto">这里有一些关于实数的定义问题了
<ul class="contains-task-list code-line" dir="auto">
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 为什么有理数那样定义</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 为什么不是有理数就是无理数</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 有理数和无理数在数轴上是怎样分布的</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 复数又是什么?它和实数分别位于什么空间?它是怎么存在的?</li>
</ul>
</li>
<li dir="auto">有理数的定义:可以由两个整数相除表示</li>
<li dir="auto">无理数:不是有理数就是无理数</li>
<li dir="auto">方法:从有理数的定义出发,隐含的条件是如果有分数 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mfrac><mi>a</mi><mi>b</mi></mfrac></mrow><annotation encoding="application/x-tex">\frac{a}{b}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0404em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6954em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">a</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span> 的形式存在,那么这两个数必然不同时为偶数,否则会有共同的因子 2 消去。因此,这两个数一奇数一偶数。我们将式子两边进行平方,可以推出 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>a</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">a^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span> 是偶数,那么由之前的结论可得 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span></span></span></span> 是偶数。将 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span></span></span></span> 改写为 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>=</mo><mn>2</mn><mi>c</mi></mrow><annotation encoding="application/x-tex">a=2c</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">2</span><span class="mord mathnormal">c</span></span></span></span> 的形式带入,又可得 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>b</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">b^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span> 是偶数。因为 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>b</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">b^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span> 是偶数,那么由之前的结论可得,<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi></mrow><annotation encoding="application/x-tex">b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">b</span></span></span></span> 是偶数。因为之前我们认为 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span></span></span></span> 和 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi></mrow><annotation encoding="application/x-tex">b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">b</span></span></span></span> 一个奇数一个偶数,<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span></span></span></span> 是偶数,那么 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi></mrow><annotation encoding="application/x-tex">b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">b</span></span></span></span> 应该是奇数。但是这里 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi></mrow><annotation encoding="application/x-tex">b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">b</span></span></span></span> 是偶数,因此出现了矛盾。得出 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msqrt><mn>2</mn></msqrt></mrow><annotation encoding="application/x-tex">\sqrt{2}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.04em;vertical-align:-0.1328em;"></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9072em;"><span class="svg-align" style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord" style="padding-left:0.833em;"><span class="mord">2</span></span></span><span style="top:-2.8672em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="min-width:0.853em;height:1.08em;"><svg xmlns="http://www.w3.org/2000/svg" width='400em' height='1.08em' viewBox='0 0 400000 1080' preserveAspectRatio='xMinYMin slice'><path d='M95,702
c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14
c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54
c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10
s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429
c69,-144,104.5,-217.7,106.5,-221
l0 -0
c5.3,-9.3,12,-14,20,-14
H400000v40H845.2724
s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7
c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z
M834 80h400000v40h-400000z'/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.1328em;"><span></span></span></span></span></span></span></span></span> 是无理数。</li>
</ul>
</li>
<li dir="auto">证明素数有无穷多个
<ul dir="auto">
<li dir="auto">这里有一些关于素数的问题了
<ul class="contains-task-list code-line" dir="auto">
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 为什么素数有无穷多个</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 欧几里得引理</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 算术基本定理:每个大于 1 的整数都可以表示为多个质数的乘积(如何证明?)</li>
</ul>
</li>
<li dir="auto">主要方法:通过将所有质数乘起来,然后加 1,构造一个数。该数应该是某个质数和一个系数的乘积。两边同时除以该质数因子。一边为整数,一边不是整数。导出了矛盾,因此质数是无限的。
<ul class="contains-task-list code-line" dir="auto">
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 这个方法能够导出矛盾的根本原因是什么?</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 还有没有其他的方法证明素数的个数是无限的?</li>
</ul>
</li>
</ul>
</li>
</ul>
</li>
</ul>
</li>
<li dir="auto"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">∀</mi><mi>x</mi><mo separator="true">,</mo><mi>P</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\forall x,P(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">∀</span><span class="mord mathnormal">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span> 类型的证明
<ul dir="auto">
<li dir="auto">原理
<ul dir="auto">
<li dir="auto">找是否 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">∃</mi><mi>x</mi><mtext>,</mtext><mi mathvariant="normal">¬</mi><mi>P</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\exists x,\lnot P(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">∃</span><span class="mord mathnormal">x</span><span class="mord cjk_fallback">,</span><span class="mord">¬</span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span>;如果找不到,那么就证明 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">P(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span> 对任意 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span></span></span></span> 都成立</li>
</ul>
</li>
<li dir="auto">经典例题
<ul dir="auto">
<li dir="auto">证明每个 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>∈</mo><mo stretchy="false">[</mo><mn>0</mn><mo separator="true">,</mo><mfrac><mi>π</mi><mn>2</mn></mfrac><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">x\in[0,\frac{\pi}{2}]</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.095em;vertical-align:-0.345em;"></span><span class="mopen">[</span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6954em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">π</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose">]</span></span></span></span>,<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>sin</mi><mo></mo><mi>x</mi><mo>+</mo><mi>cos</mi><mo></mo><mi>x</mi><mo>≥</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">\sin{x}+\cos{x}\ge{1}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7512em;vertical-align:-0.0833em;"></span><span class="mop">sin</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">x</span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.7719em;vertical-align:-0.136em;"></span><span class="mop">cos</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">x</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≥</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord"><span class="mord">1</span></span></span></span></span></li>
</ul>
</li>
</ul>
</li>
<li dir="auto"><code>Conditional Statement</code> (即 <code>if P, then Q</code> 形式)的反证法证明
<ul dir="auto">
<li dir="auto">原理
<ul dir="auto">
<li dir="auto">需要注意的是,反证否定整个结论。在之前我们的结论是 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi></mrow><annotation encoding="application/x-tex">P</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span></span></span></span>,因此否定后的结论是 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">¬</mi><mi>P</mi></mrow><annotation encoding="application/x-tex">\lnot P</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord">¬</span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span></span></span></span>。现在我们 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mtext> </mtext><mo>⟹</mo><mtext> </mtext><mi>Q</mi></mrow><annotation encoding="application/x-tex">P\implies{Q}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7073em;vertical-align:-0.024em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⟹</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8778em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal">Q</span></span></span></span></span>,那么否定后的结论就是 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">¬</mi><mo stretchy="false">(</mo><mrow><mi>P</mi><mtext> </mtext><mo>⟹</mo><mtext> </mtext><mi>Q</mi></mrow><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\lnot({P\implies{Q}})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">¬</span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⟹</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal">Q</span></span></span><span class="mclose">)</span></span></span></span></li>
<li dir="auto">我们的目的是从 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">¬</mi><mo stretchy="false">(</mo><mrow><mi>P</mi><mtext> </mtext><mo>⟹</mo><mtext> </mtext><mi>Q</mi></mrow><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\lnot({P\implies{Q}})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">¬</span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⟹</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal">Q</span></span></span><span class="mclose">)</span></span></span></span> 为 <code>True</code> 开始证,也就是说 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mtext> </mtext><mo>⟹</mo><mtext> </mtext><mi>Q</mi></mrow><annotation encoding="application/x-tex">P\implies{Q}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7073em;vertical-align:-0.024em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⟹</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8778em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal">Q</span></span></span></span></span> 为 <code>False</code></li>
<li dir="auto">分析 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mtext> </mtext><mo>⟹</mo><mtext> </mtext><mi>Q</mi></mrow><annotation encoding="application/x-tex">P\implies{Q}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7073em;vertical-align:-0.024em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⟹</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8778em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal">Q</span></span></span></span></span>,我们知道只有在 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi></mrow><annotation encoding="application/x-tex">P</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span></span></span></span> 为 <code>True</code> 且 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>Q</mi></mrow><annotation encoding="application/x-tex">Q</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8778em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">Q</span></span></span></span> 为 <code>False</code> 时结论为 <code>False</code>。那么就从这里开始证,也就是第一步设定 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi></mrow><annotation encoding="application/x-tex">P</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span></span></span></span> 且 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">¬</mi><mi>Q</mi></mrow><annotation encoding="application/x-tex">\lnot{Q}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8778em;vertical-align:-0.1944em;"></span><span class="mord">¬</span><span class="mord"><span class="mord mathnormal">Q</span></span></span></span></span>。最后推导出一个矛盾。</li>
</ul>
</li>
<li dir="auto">经典例题
<ul dir="auto">
<li dir="auto">证明如果 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>a</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">a^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span> 是偶数,那么 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span></span></span></span> 是偶数
<ul dir="auto">
<li dir="auto">首先我们<strong>声明采用反证法</strong>,假设 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>a</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">a^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span> 是偶数且 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span></span></span></span> 是奇数</li>
<li dir="auto">那么设 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>=</mo><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">a=2n+1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">2</span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span>,那么 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>a</mi><mn>2</mn></msup><mo>=</mo><mn>4</mn><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>n</mi><mo>+</mo><mn>1</mn><mo>=</mo><mn>2</mn><mo stretchy="false">(</mo><mn>2</mn><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>n</mi><mo stretchy="false">)</mo><mo>+</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">a^2=4n^2+4n+1=2(2n^2+2n)+1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8974em;vertical-align:-0.0833em;"></span><span class="mord">4</span><span class="mord"><span class="mord mathnormal">n</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">4</span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord">2</span><span class="mopen">(</span><span class="mord">2</span><span class="mord"><span class="mord mathnormal">n</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">2</span><span class="mord mathnormal">n</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span>,为奇数</li>
<li dir="auto">产生矛盾,证毕</li>
</ul>
</li>
</ul>
</li>
</ul>
</li>
<li dir="auto">使用经验
<ul dir="auto">
<li dir="auto">多种证明方法综合使用:可能总的使用的是 <code>direct proof</code>,但是在中间部分结论的证明过程中,可能会使用其他的证明方法,如逆反命题证明法或者反证法等等</li>
<li dir="auto">关于反证法的一些建议:部分反证法和逆否命题推理法相似,注意区分</li>
</ul>
</li>
<li dir="auto">经典例题
<ul class="contains-task-list code-line" dir="auto">
<li dir="auto">证明某个无理数(如 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msqrt><mn>2</mn></msqrt><mo separator="true">,</mo><mroot><mn>2</mn><mn>3</mn></mroot><mo separator="true">,</mo><msqrt><mn>6</mn></msqrt></mrow><annotation encoding="application/x-tex">\sqrt{2},\sqrt[3]{2},\sqrt{6}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.1017em;vertical-align:-0.1944em;"></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9072em;"><span class="svg-align" style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord" style="padding-left:0.833em;"><span class="mord">2</span></span></span><span style="top:-2.8672em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="min-width:0.853em;height:1.08em;"><svg xmlns="http://www.w3.org/2000/svg" width='400em' height='1.08em' viewBox='0 0 400000 1080' preserveAspectRatio='xMinYMin slice'><path d='M95,702
c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14
c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54
c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10
s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429
c69,-144,104.5,-217.7,106.5,-221
l0 -0
c5.3,-9.3,12,-14,20,-14
H400000v40H845.2724
s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7
c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z
M834 80h400000v40h-400000z'/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.1328em;"><span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord sqrt"><span class="root"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7869em;"><span style="top:-2.9647em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size6 size1 mtight"><span class="mord mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9072em;"><span class="svg-align" style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord" style="padding-left:0.833em;"><span class="mord">2</span></span></span><span style="top:-2.8672em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="min-width:0.853em;height:1.08em;"><svg xmlns="http://www.w3.org/2000/svg" width='400em' height='1.08em' viewBox='0 0 400000 1080' preserveAspectRatio='xMinYMin slice'><path d='M95,702
c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14
c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54
c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10
s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429
c69,-144,104.5,-217.7,106.5,-221
l0 -0
c5.3,-9.3,12,-14,20,-14
H400000v40H845.2724
s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7
c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z
M834 80h400000v40h-400000z'/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.1328em;"><span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9072em;"><span class="svg-align" style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord" style="padding-left:0.833em;"><span class="mord">6</span></span></span><span style="top:-2.8672em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="min-width:0.853em;height:1.08em;"><svg xmlns="http://www.w3.org/2000/svg" width='400em' height='1.08em' viewBox='0 0 400000 1080' preserveAspectRatio='xMinYMin slice'><path d='M95,702
c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14
c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54
c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10
s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429
c69,-144,104.5,-217.7,106.5,-221
l0 -0
c5.3,-9.3,12,-14,20,-14
H400000v40H845.2724
s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7
c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z
M834 80h400000v40h-400000z'/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.1328em;"><span></span></span></span></span></span></span></span></span>)不是有理数
<ul class="contains-task-list code-line" dir="auto">
<li dir="auto">经典方法:对于有理数,分子分母一定是一个为奇数,一个为偶数,不可能同为奇数或同为偶数。因此对于一个数是否是有理数的证明,可以转化为让这个无理数等于某个有理数形式,然后转化为证明分子分母的奇偶性不相等</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 使用费马大定理(<code>fermat's last theorem</code>)</li>
</ul>
</li>
<li dir="auto">额外典型例题:证明 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msqrt><mn>3</mn></msqrt></mrow><annotation encoding="application/x-tex">\sqrt{3}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.04em;vertical-align:-0.1328em;"></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9072em;"><span class="svg-align" style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord" style="padding-left:0.833em;"><span class="mord">3</span></span></span><span style="top:-2.8672em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="min-width:0.853em;height:1.08em;"><svg xmlns="http://www.w3.org/2000/svg" width='400em' height='1.08em' viewBox='0 0 400000 1080' preserveAspectRatio='xMinYMin slice'><path d='M95,702
c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14
c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54
c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10
s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429
c69,-144,104.5,-217.7,106.5,-221
l0 -0
c5.3,-9.3,12,-14,20,-14
H400000v40H845.2724
s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7
c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z
M834 80h400000v40h-400000z'/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.1328em;"><span></span></span></span></span></span></span></span></span> 不是有理数
<ul dir="auto">
<li dir="auto">核心技巧:证明 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span></span></span></span> 和 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi></mrow><annotation encoding="application/x-tex">b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">b</span></span></span></span> 都有同一个因子 3,这样有理数会约分,那么假设 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msqrt><mn>3</mn></msqrt><mo>=</mo><mfrac><mi>a</mi><mi>b</mi></mfrac></mrow><annotation encoding="application/x-tex">\sqrt{3}=\frac{a}{b}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.04em;vertical-align:-0.1328em;"></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9072em;"><span class="svg-align" style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord" style="padding-left:0.833em;"><span class="mord">3</span></span></span><span style="top:-2.8672em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="min-width:0.853em;height:1.08em;"><svg xmlns="http://www.w3.org/2000/svg" width='400em' height='1.08em' viewBox='0 0 400000 1080' preserveAspectRatio='xMinYMin slice'><path d='M95,702
c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14
c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54
c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10
s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429
c69,-144,104.5,-217.7,106.5,-221
l0 -0
c5.3,-9.3,12,-14,20,-14
H400000v40H845.2724
s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7
c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z
M834 80h400000v40h-400000z'/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.1328em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.0404em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6954em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">b</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">a</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span> 就不符合了</li>
<li dir="auto">两边同时进行平方,得到 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>a</mi><mn>2</mn></msup><mo>=</mo><mn>3</mn><msup><mi>b</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">a^2=3b^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">3</span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span>,那么可得 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3</mn><mi mathvariant="normal">∣</mi><msup><mi>a</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">3|a^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord">3∣</span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></li>
<li dir="auto">下面是关键步骤,<strong>使用逆否命题证明方法由 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3</mn><mi mathvariant="normal">∣</mi><msup><mi>a</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">3|a^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord">3∣</span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span> 得到 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3</mn><mi mathvariant="normal">∣</mi><mi>a</mi></mrow><annotation encoding="application/x-tex">3|a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">3∣</span><span class="mord mathnormal">a</span></span></span></span></strong>
<ul dir="auto">
<li dir="auto">这里是 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mtext> </mtext><mo>⟹</mo><mtext> </mtext><mi>Q</mi></mrow><annotation encoding="application/x-tex">P\implies{Q}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7073em;vertical-align:-0.024em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⟹</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8778em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal">Q</span></span></span></span></span> 形式,逆否命题的证明方法是由 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3</mn><mo>∤</mo><mi>a</mi></mrow><annotation encoding="application/x-tex">3\nmid a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9925em;vertical-align:-0.2514em;"></span><span class="mord">3</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel amsrm">∤</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span></span></span></span> 出发,得到 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3</mn><mo>∤</mo><msup><mi>a</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">3\nmid a^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9925em;vertical-align:-0.2514em;"></span><span class="mord">3</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel amsrm">∤</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></li>
<li dir="auto">由于 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3</mn><mo>∤</mo><mi>a</mi></mrow><annotation encoding="application/x-tex">3\nmid a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9925em;vertical-align:-0.2514em;"></span><span class="mord">3</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel amsrm">∤</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span></span></span></span>,那么假设 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mfrac><mi>a</mi><mn>3</mn></mfrac></mrow><annotation encoding="application/x-tex">\frac{a}{3}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0404em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6954em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">3</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">a</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span> 有两种余数:1 和 2</li>
<li dir="auto">设余数为 1,那么 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>=</mo><mn>3</mn><mi>q</mi><mo>+</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">a=3q+1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8389em;vertical-align:-0.1944em;"></span><span class="mord">3</span><span class="mord mathnormal" style="margin-right:0.03588em;">q</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span>,那么 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>a</mi><mn>2</mn></msup><mo>=</mo><mn>9</mn><msup><mi>q</mi><mn>2</mn></msup><mo>+</mo><mn>6</mn><mi>q</mi><mo>+</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">a^2=9q^2+6q+1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.0085em;vertical-align:-0.1944em;"></span><span class="mord">9</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">q</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8389em;vertical-align:-0.1944em;"></span><span class="mord">6</span><span class="mord mathnormal" style="margin-right:0.03588em;">q</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span>,<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3</mn><mo>∤</mo><msup><mi>a</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">3\nmid a^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9925em;vertical-align:-0.2514em;"></span><span class="mord">3</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel amsrm">∤</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></li>
<li dir="auto">设余数为 2,那么 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>=</mo><mn>3</mn><mi>q</mi><mo>+</mo><mn>2</mn></mrow><annotation encoding="application/x-tex">a=3q+2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8389em;vertical-align:-0.1944em;"></span><span class="mord">3</span><span class="mord mathnormal" style="margin-right:0.03588em;">q</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">2</span></span></span></span>,那么 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>a</mi><mn>2</mn></msup><mo>=</mo><mn>9</mn><msup><mi>q</mi><mn>2</mn></msup><mo>+</mo><mn>12</mn><mi>q</mi><mo>+</mo><mn>4</mn></mrow><annotation encoding="application/x-tex">a^2=9q^2+12q+4</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.0085em;vertical-align:-0.1944em;"></span><span class="mord">9</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">q</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8389em;vertical-align:-0.1944em;"></span><span class="mord">12</span><span class="mord mathnormal" style="margin-right:0.03588em;">q</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">4</span></span></span></span>,<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3</mn><mo>∤</mo><msup><mi>a</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">3\nmid a^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9925em;vertical-align:-0.2514em;"></span><span class="mord">3</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel amsrm">∤</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></li>
</ul>
</li>
<li dir="auto">因为 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3</mn><mi mathvariant="normal">∣</mi><mi>a</mi></mrow><annotation encoding="application/x-tex">3|a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">3∣</span><span class="mord mathnormal">a</span></span></span></span>,因此设 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>=</mo><mn>3</mn><mi>d</mi></mrow><annotation encoding="application/x-tex">a=3d</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord">3</span><span class="mord mathnormal">d</span></span></span></span>,带入得到 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>b</mi><mn>2</mn></msup><mo>=</mo><mn>3</mn><msup><mi>d</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">b^2=3d^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">3</span><span class="mord"><span class="mord mathnormal">d</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></li>
<li dir="auto">下面证明<strong>由 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3</mn><mi mathvariant="normal">∣</mi><msup><mi>d</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">3|d^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord">3∣</span><span class="mord"><span class="mord mathnormal">d</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span> 得到 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3</mn><mi mathvariant="normal">∣</mi><mi>d</mi></mrow><annotation encoding="application/x-tex">3|d</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">3∣</span><span class="mord mathnormal">d</span></span></span></span></strong>,使用同样的逆否命题推理方法,从 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3</mn><mo>∤</mo><mi>d</mi></mrow><annotation encoding="application/x-tex">3\nmid d</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9925em;vertical-align:-0.2514em;"></span><span class="mord">3</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel amsrm">∤</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">d</span></span></span></span> 推导到 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3</mn><mo>∤</mo><msup><mi>d</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">3\nmid d^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9925em;vertical-align:-0.2514em;"></span><span class="mord">3</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel amsrm">∤</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal">d</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></li>
<li dir="auto">因为 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3</mn><mi mathvariant="normal">∣</mi><mi>a</mi></mrow><annotation encoding="application/x-tex">3|a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">3∣</span><span class="mord mathnormal">a</span></span></span></span> 且 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3</mn><mi mathvariant="normal">∣</mi><mi>b</mi></mrow><annotation encoding="application/x-tex">3|b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">3∣</span><span class="mord mathnormal">b</span></span></span></span>,不满足有理数最简形,因此 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msqrt><mn>3</mn></msqrt></mrow><annotation encoding="application/x-tex">\sqrt{3}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.04em;vertical-align:-0.1328em;"></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9072em;"><span class="svg-align" style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord" style="padding-left:0.833em;"><span class="mord">3</span></span></span><span style="top:-2.8672em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="min-width:0.853em;height:1.08em;"><svg xmlns="http://www.w3.org/2000/svg" width='400em' height='1.08em' viewBox='0 0 400000 1080' preserveAspectRatio='xMinYMin slice'><path d='M95,702
c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14
c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54
c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10
s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429
c69,-144,104.5,-217.7,106.5,-221
l0 -0
c5.3,-9.3,12,-14,20,-14
H400000v40H845.2724
s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7
c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z
M834 80h400000v40h-400000z'/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.1328em;"><span></span></span></span></span></span></span></span></span> 不是有理数</li>
</ul>
</li>
<li dir="auto">使用反证法,利用奇偶性,引出整数和分数相等的矛盾
<ul dir="auto">
<li dir="auto">If <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo>∈</mo><mi>Z</mi></mrow><annotation encoding="application/x-tex">a,b\in Z</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">Z</span></span></span></span>, then <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>a</mi><mn>2</mn></msup><mo>−</mo><mn>4</mn><mi>b</mi><mo>−</mo><mn>3</mn><mo mathvariant="normal">≠</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">a^2-4b-3\ne{0}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8974em;vertical-align:-0.0833em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.7778em;vertical-align:-0.0833em;"></span><span class="mord">4</span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord">3</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"><span class="mrel"><span class="mord vbox"><span class="thinbox"><span class="rlap"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="inner"><span class="mord"><span class="mrel"></span></span></span><span class="fix"></span></span></span></span></span><span class="mrel">=</span></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord"><span class="mord">0</span></span></span></span></span>.
<ul dir="auto">
<li dir="auto">反证法的原理是:设 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo>∈</mo><mi>Z</mi></mrow><annotation encoding="application/x-tex">a,b\in Z</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">Z</span></span></span></span>, 且 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>a</mi><mn>2</mn></msup><mo>−</mo><mn>4</mn><mi>b</mi><mo>−</mo><mn>3</mn><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">a^2-4b-3={0}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8974em;vertical-align:-0.0833em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.7778em;vertical-align:-0.0833em;"></span><span class="mord">4</span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">3</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord"><span class="mord">0</span></span></span></span></span></li>
<li dir="auto">那么 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>a</mi><mn>2</mn></msup><mo>=</mo><mn>4</mn><mi>b</mi><mo>+</mo><mn>3</mn><mo>=</mo><mn>4</mn><mi>b</mi><mo>+</mo><mn>2</mn><mo>+</mo><mn>1</mn><mo>=</mo><mn>2</mn><mo stretchy="false">(</mo><mn>2</mn><mi>b</mi><mo>+</mo><mn>1</mn><mo stretchy="false">)</mo><mo>+</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">a^2=4b+3=4b+2+1=2(2b+1)+1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7778em;vertical-align:-0.0833em;"></span><span class="mord">4</span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">3</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7778em;vertical-align:-0.0833em;"></span><span class="mord">4</span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">2</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">2</span><span class="mopen">(</span><span class="mord">2</span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">1</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span> 为奇数</li>
<li dir="auto">因为 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>a</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">a^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span> 为奇数,那么 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span></span></span></span> 为奇数(前面证过)</li>
<li dir="auto">那么我们让 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>=</mo><mn>2</mn><mi>c</mi><mo>+</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">a=2c+1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">2</span><span class="mord mathnormal">c</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span>,带入到式子中,得到 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>4</mn><msup><mi>c</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>c</mi><mo>+</mo><mn>1</mn><mo>=</mo><mn>4</mn><mi>b</mi><mo>+</mo><mn>3</mn></mrow><annotation encoding="application/x-tex">4c^2+4c+1=4b+3</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8974em;vertical-align:-0.0833em;"></span><span class="mord">4</span><span class="mord"><span class="mord mathnormal">c</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">4</span><span class="mord mathnormal">c</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7778em;vertical-align:-0.0833em;"></span><span class="mord">4</span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">3</span></span></span></span></li>
<li dir="auto">因此有 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>4</mn><msup><mi>c</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>c</mi><mo>−</mo><mn>4</mn><mi>b</mi><mo>=</mo><mn>2</mn></mrow><annotation encoding="application/x-tex">4c^2+4c-4b=2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8974em;vertical-align:-0.0833em;"></span><span class="mord">4</span><span class="mord"><span class="mord mathnormal">c</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">4</span><span class="mord mathnormal">c</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord">4</span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">2</span></span></span></span>,也就是说 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>c</mi><mn>2</mn></msup><mo>+</mo><mi>c</mi><mo>−</mo><mi>b</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow><annotation encoding="application/x-tex">c^2+c-b=\frac{1}{2}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8974em;vertical-align:-0.0833em;"></span><span class="mord"><span class="mord mathnormal">c</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">c</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.1901em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8451em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></li>
<li dir="auto">式子的左边是整数,右边是分数,两边不可能相等,产生矛盾</li>
<li dir="auto">因此可以得出结论</li>
</ul>
</li>
</ul>
</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 集合相关证明
<ul class="contains-task-list code-line" dir="auto">
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 集合论学习</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 集合的差运算是如何进行数学定义的?是否具有分配律?对其进行证明?</li>
</ul>
</li>
<li dir="auto">If <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi><mo>∈</mo><mi>Z</mi></mrow><annotation encoding="application/x-tex">b \in{Z}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7335em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">Z</span></span></span></span></span> and <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi><mo>∤</mo><mi>k</mi></mrow><annotation encoding="application/x-tex">b\nmid{k}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9925em;vertical-align:-0.2514em;"></span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel amsrm">∤</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03148em;">k</span></span></span></span></span> for every <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>k</mi><mo>∈</mo><mi>N</mi></mrow><annotation encoding="application/x-tex">k\in{N}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7335em;vertical-align:-0.0391em;"></span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">N</span></span></span></span></span>, then <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">b=0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span>:==注意== 因为 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi></mrow><annotation encoding="application/x-tex">b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">b</span></span></span></span> 是整数,而 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span></span></span></span> 是自然数,因此需要分类讨论 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi><mo>></mo><mn>0</mn></mrow><annotation encoding="application/x-tex">b>0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7335em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span> 和 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi><mo><</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">b<0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7335em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"><</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span> 的情况</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 综合例题
<ul class="contains-task-list code-line" dir="auto">
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> <code>初等数论</code> 教材搜集并学习</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> <code>Fermat's two square theorem</code></li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 同余相关学习</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> <code>sum of 2 squared</code> 性质学习</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 初等数论学习</li>
<li dir="auto">提示
<ul dir="auto">
<li dir="auto">首先证明 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup><mo>=</mo><mn>3</mn><msup><mi>c</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">a^2+b^2=3c^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8974em;vertical-align:-0.0833em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">3</span><span class="mord"><span class="mord mathnormal">c</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span> 无除 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mn>0</mn><mo separator="true">,</mo><mn>0</mn><mo separator="true">,</mo><mn>0</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(0,0,0)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">0</span><span class="mclose">)</span></span></span></span> 外的有理数解
<ul dir="auto">
<li dir="auto">探查一下平方和对 4 求模的余数</li>
<li dir="auto">然后证明 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mn>0</mn><mo separator="true">,</mo><mn>0</mn><mo separator="true">,</mo><mn>0</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(0,0,0)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">0</span><span class="mclose">)</span></span></span></span> 是唯一解</li>
</ul>
</li>
<li dir="auto">接下来使用反证法,设 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup><mo>=</mo><mn>3</mn></mrow><annotation encoding="application/x-tex">a^2+b^2=3</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8974em;vertical-align:-0.0833em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">3</span></span></span></span> 存在有理数解。利用有理数的定义推导出一个矛盾来</li>
</ul>
</li>
<li dir="auto">证明不存在 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo separator="true">,</mo><mi>y</mi><mo>∈</mo><mi>Q</mi></mrow><annotation encoding="application/x-tex">x,y\in{Q}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7335em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8778em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal">Q</span></span></span></span></span>,使得 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><msup><mi>y</mi><mn>2</mn></msup><mo>−</mo><mn>3</mn><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">x^2+y^2-3=0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8974em;vertical-align:-0.0833em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0085em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">3</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span>
<ul dir="auto">
<li dir="auto">我们需要将问题拆解为以下几个小的证明
<ul dir="auto">
<li dir="auto">证明不存在 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo separator="true">,</mo><mi>y</mi><mo separator="true">,</mo><mi>z</mi><mo>∈</mo><mi>Z</mi></mrow><annotation encoding="application/x-tex">x,y,z\in{Z}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7335em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">Z</span></span></span></span></span>,使得 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><mn>3</mn><msup><mi>z</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">x^2+y^2=3z^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8974em;vertical-align:-0.0833em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0085em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord">3</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span> 成立
<ul dir="auto">
<li dir="auto">两个问题
<ul dir="auto">
<li dir="auto">怎么证明 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><msup><mi>y</mi><mn>2</mn></msup><mo stretchy="false">(</mo><mi>x</mi><mo separator="true">,</mo><mi>y</mi><mo>∈</mo><mi>Z</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">x^2+y^2(x,y\in{Z})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8974em;vertical-align:-0.0833em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0641em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">Z</span></span><span class="mclose">)</span></span></span></span> 是 3 的倍数?</li>
<li dir="auto">如果 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><msup><mi>y</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">x^2+y^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8974em;vertical-align:-0.0833em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0085em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span> 是 3 的倍数,那么怎么证明 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>z</mi></mrow><annotation encoding="application/x-tex">z</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal" style="margin-right:0.04398em;">z</span></span></span></span> 是个整数?</li>
</ul>
</li>
</ul>
</li>
<li dir="auto">证明 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mn>0</mn><mo separator="true">,</mo><mn>0</mn><mo separator="true">,</mo><mn>0</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(0,0,0)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">0</span><span class="mclose">)</span></span></span></span> 是唯一解</li>
<li dir="auto">证明 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup><mo>=</mo><mn>3</mn></mrow><annotation encoding="application/x-tex">a^2+b^2=3</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8974em;vertical-align:-0.0833em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">3</span></span></span></span> 不存在有理数解</li>
</ul>
</li>
</ul>
</li>
<li dir="auto">利用上一问的结论,证明 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msqrt><mn>3</mn></msqrt></mrow><annotation encoding="application/x-tex">\sqrt{3}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.04em;vertical-align:-0.1328em;"></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9072em;"><span class="svg-align" style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord" style="padding-left:0.833em;"><span class="mord">3</span></span></span><span style="top:-2.8672em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="min-width:0.853em;height:1.08em;"><svg xmlns="http://www.w3.org/2000/svg" width='400em' height='1.08em' viewBox='0 0 400000 1080' preserveAspectRatio='xMinYMin slice'><path d='M95,702
c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14
c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54
c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10
s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429
c69,-144,104.5,-217.7,106.5,-221
l0 -0
c5.3,-9.3,12,-14,20,-14
H400000v40H845.2724
s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7
c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z
M834 80h400000v40h-400000z'/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.1328em;"><span></span></span></span></span></span></span></span></span> 是无理数</li>
<li dir="auto">说明为什么 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><msup><mi>y</mi><mn>2</mn></msup><mo>−</mo><mn>3</mn><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">x^2+y^2-3=0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8974em;vertical-align:-0.0833em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0085em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">3</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span> 没有有理数解,能够推理出 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><msup><mi>y</mi><mn>2</mn></msup><mo>−</mo><msup><mn>3</mn><mi>k</mi></msup><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">x^2+y^2-3^k=0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8974em;vertical-align:-0.0833em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0085em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8491em;"></span><span class="mord"><span class="mord">3</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8491em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span> 没有有理数解(<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span></span></span></span> 为正奇数)</li>
<li dir="auto">利用上面的结论,证明对于任意的正奇数 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span></span></span></span>,<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msqrt><msup><mn>3</mn><mi>k</mi></msup></msqrt></mrow><annotation encoding="application/x-tex">\sqrt{3^{k}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.04em;vertical-align:-0.0674em;"></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9726em;"><span class="svg-align" style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord" style="padding-left:0.833em;"><span class="mord"><span class="mord">3</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7751em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span></span></span></span></span></span></span></span></span></span></span><span style="top:-2.9326em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="min-width:0.853em;height:1.08em;"><svg xmlns="http://www.w3.org/2000/svg" width='400em' height='1.08em' viewBox='0 0 400000 1080' preserveAspectRatio='xMinYMin slice'><path d='M95,702
c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14
c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54
c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10
s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429
c69,-144,104.5,-217.7,106.5,-221
l0 -0
c5.3,-9.3,12,-14,20,-14
H400000v40H845.2724
s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7
c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z
M834 80h400000v40h-400000z'/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.0674em;"><span></span></span></span></span></span></span></span></span> 是无理数</li>
<li dir="auto">证明 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msubsup><mrow><mi>log</mi><mo></mo></mrow><mn>2</mn><mn>3</mn></msubsup></mrow><annotation encoding="application/x-tex">\log_{2}^{3}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.1454em;vertical-align:-0.247em;"></span><span class="mop"><span class="mop">lo<span style="margin-right:0.01389em;">g</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8984em;"><span style="top:-2.453em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span><span style="top:-3.1473em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">3</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em;"><span></span></span></span></span></span></span></span></span></span> 是无理数</li>
</ul>
</li>
</ul>
</li>
</ul>
</li>
</ul>
</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 更多证明相关
<ul class="contains-task-list code-line" dir="auto">
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 证明 <code>Non-conditional Statements</code>
<ul class="contains-task-list code-line" dir="auto">
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> <code>if and only if Statement </code> 证明
<ul dir="auto">
<li dir="auto"><code>if and only if</code> 即 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mo>↔</mo><mi>Q</mi></mrow><annotation encoding="application/x-tex">P\leftrightarrow{Q}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">↔</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8778em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal">Q</span></span></span></span></span></li>
<li dir="auto">在证明时我们既需要证明 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mtext> </mtext><mo>⟹</mo><mtext> </mtext><mi>Q</mi></mrow><annotation encoding="application/x-tex">P\implies{Q}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7073em;vertical-align:-0.024em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⟹</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8778em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal">Q</span></span></span></span></span>,也需要证明 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>Q</mi><mtext> </mtext><mo>⟹</mo><mtext> </mtext><mi>P</mi></mrow><annotation encoding="application/x-tex">Q\implies{P}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8778em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">Q</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⟹</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">P</span></span></span></span></span></li>
<li dir="auto">在证明时可以使用 <code>direct proof / contrapositive proof / proof by contradiction</code> 三种方法</li>
<li dir="auto">在证明时分成两段,第二段开头可以用 <code>Conversely</code></li>
<li dir="auto">经典例题
<ul dir="auto">
<li dir="auto"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>6</mn><mo>∣</mo><mi>a</mi><mo>−</mo><mi>b</mi></mrow><annotation encoding="application/x-tex">6 \mid a-b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">6</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∣</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">b</span></span></span></span> <code>if and only if</code> <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2</mn><mo>∣</mo><mi>a</mi><mo>−</mo><mi>b</mi></mrow><annotation encoding="application/x-tex">2 \mid a-b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">2</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∣</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">b</span></span></span></span> and <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3</mn><mo>∣</mo><mi>a</mi><mo>−</mo><mi>b</mi></mrow><annotation encoding="application/x-tex">3 \mid a-b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">3</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∣</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">b</span></span></span></span></li>
<li dir="auto">==注意== 向右边证很容易,但是要向左边证明的话,需要巧妙地利用奇偶性</li>
<li dir="auto">因为 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2</mn><mo>∣</mo><mi>a</mi><mo>−</mo><mi>b</mi></mrow><annotation encoding="application/x-tex">2\mid a-b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">2</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∣</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">b</span></span></span></span>,因此 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>−</mo><mi>b</mi><mo>=</mo><mn>2</mn><mi>n</mi><mo stretchy="false">(</mo><mi>n</mi><mo>∈</mo><mi>Z</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">a-b=2n(n\in{Z})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">2</span><span class="mord mathnormal">n</span><span class="mopen">(</span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">Z</span></span><span class="mclose">)</span></span></span></span>,此外,<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>−</mo><mi>b</mi></mrow><annotation encoding="application/x-tex">a-b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">b</span></span></span></span> 是个偶数</li>
<li dir="auto"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>−</mo><mi>b</mi><mo>=</mo><mn>3</mn><mi>l</mi><mo stretchy="false">(</mo><mi>l</mi><mo>∈</mo><mi>Z</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">a-b = 3l(l\in{Z})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">3</span><span class="mord mathnormal" style="margin-right:0.01968em;">l</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.01968em;">l</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">Z</span></span><span class="mclose">)</span></span></span></span>,因为 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>−</mo><mi>b</mi></mrow><annotation encoding="application/x-tex">a-b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">b</span></span></span></span> 是个偶数,因此 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>l</mi></mrow><annotation encoding="application/x-tex">l</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal" style="margin-right:0.01968em;">l</span></span></span></span> 必然是个偶数,因此 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>l</mi><mo>=</mo><mn>2</mn><mi>m</mi><mo separator="true">,</mo><mi>m</mi><mo>∈</mo><mi>Z</mi></mrow><annotation encoding="application/x-tex">l=2m,m\in{Z}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal" style="margin-right:0.01968em;">l</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8389em;vertical-align:-0.1944em;"></span><span class="mord">2</span><span class="mord mathnormal">m</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">m</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">Z</span></span></span></span></span></li>
<li dir="auto">那么 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>−</mo><mi>b</mi></mrow><annotation encoding="application/x-tex">a-b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">b</span></span></span></span> 就可以写成 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>−</mo><mi>b</mi><mo>=</mo><mn>3</mn><mi>l</mi><mo>=</mo><mn>3</mn><mo>⋅</mo><mn>2</mn><mi>m</mi><mo>=</mo><mn>6</mn><mi>m</mi></mrow><annotation encoding="application/x-tex">a-b=3l=3\cdot 2m=6m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord">3</span><span class="mord mathnormal" style="margin-right:0.01968em;">l</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">3</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">2</span><span class="mord mathnormal">m</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">6</span><span class="mord mathnormal">m</span></span></span></span>,由此得出 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>6</mn><mo>∣</mo><mi>a</mi><mo>−</mo><mi>b</mi></mrow><annotation encoding="application/x-tex">6\mid a-b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">6</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∣</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">b</span></span></span></span></li>
</ul>
</li>
</ul>
</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> <code>Equivalent Statement</code> 证明
<ul dir="auto">
<li dir="auto">原理
<ul dir="auto">
<li dir="auto">复习一下 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mtext> </mtext><mo>⟹</mo><mtext> </mtext><mi>Q</mi></mrow><annotation encoding="application/x-tex">P\implies{Q}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7073em;vertical-align:-0.024em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⟹</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8778em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal">Q</span></span></span></span></span>,只有当 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi></mrow><annotation encoding="application/x-tex">P</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span></span></span></span> 为 <code>True</code> 且 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>Q</mi></mrow><annotation encoding="application/x-tex">Q</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8778em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">Q</span></span></span></span> 为 <code>False</code> 时,该命题才为 <code>False</code>,其他时候都是 <code>True</code>
<ul dir="auto">
<li dir="auto">因为等价命题链条中所有的 <code>conditional statement</code> 都为 <code>True</code>,因此如果一个命题为 <code>True</code>,那么它后面接着的命题必须为 <code>True</code>。一旦有一个命题为 <code>False</code>,那么它前面所有相连的命题必然为 <code>False</code>。</li>
</ul>
</li>
<li dir="auto">此外,对于 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mo>↔</mo><mi>Q</mi></mrow><annotation encoding="application/x-tex">P\leftrightarrow{Q}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">↔</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8778em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal">Q</span></span></span></span></span>,<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi></mrow><annotation encoding="application/x-tex">P</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span></span></span></span> 和 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>Q</mi></mrow><annotation encoding="application/x-tex">Q</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8778em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">Q</span></span></span></span> 的等价性相同</li>
</ul>
</li>
</ul>
</li>
<li dir="auto">存在性证明,存在性和唯一性证明
<ul class="contains-task-list code-line" dir="auto">
<li dir="auto">多数 <code>if xxx,then xxx</code> 是 <code>conditional statement</code>,一般可以用 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">∀</mi><mi>x</mi><mo separator="true">,</mo><mi>P</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\forall x,P(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">∀</span><span class="mord mathnormal">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span> 表示</li>
<li dir="auto">对于 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">∃</mi><mi>x</mi><mo separator="true">,</mo><mi>P</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\exists x,P(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">∃</span><span class="mord mathnormal">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span> 的证明,直接举例即可</li>
<li dir="auto">其他的可以用 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">∃</mi><mi>x</mi><mo separator="true">,</mo><mi>P</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\exists x,P(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">∃</span><span class="mord mathnormal">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span> 表示,我们要做的是找到一个符合 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">P(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span> 的例子
<ul class="contains-task-list code-line" dir="auto">
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 存在一个数,它可以由两种不同的两数立方和表示(1729)</li>
</ul>
</li>
<li dir="auto">但是通常来说只找到一个例子是不够有说服力的,我们需要提供证明</li>
<li dir="auto">存在性例题
<ul dir="auto">
<li dir="auto">如果 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo>∈</mo><mi>N</mi></mrow><annotation encoding="application/x-tex">a,b\in{N}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">N</span></span></span></span></span>,那么存在整数 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>k</mi><mo separator="true">,</mo><mi>l</mi></mrow><annotation encoding="application/x-tex">k,l</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.01968em;">l</span></span></span></span> ,使得 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>g</mi><mi>c</mi><mi>d</mi><mo stretchy="false">(</mo><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo stretchy="false">)</mo><mo>=</mo><mi>a</mi><mi>k</mi><mo>+</mo><mi>b</mi><mi>l</mi></mrow><annotation encoding="application/x-tex">gcd(a,b)=ak+bl</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mord mathnormal">c</span><span class="mord mathnormal">d</span><span class="mopen">(</span><span class="mord mathnormal">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">b</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7778em;vertical-align:-0.0833em;"></span><span class="mord mathnormal" style="margin-right:0.03148em;">ak</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">b</span><span class="mord mathnormal" style="margin-right:0.01968em;">l</span></span></span></span>
<ul class="contains-task-list code-line" dir="auto">
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> <code>gcd</code> 和 <code>lcm</code> 的一些特性和证明需要学习</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 依然是需要初等数论的学习</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> Bézout's lemma/identity</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> Division algorithm 及其证明学习</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> Well-ordering theorem 及其应用</li>
<li dir="auto">我的分析
<ul dir="auto">
<li dir="auto">本题是让我们证明<strong>存在性</strong>,<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span></span></span></span> 和 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi></mrow><annotation encoding="application/x-tex">b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">b</span></span></span></span> 的最大公约数是 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span></span></span></span> 和 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi></mrow><annotation encoding="application/x-tex">b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">b</span></span></span></span> 的某种组合</li>
<li dir="auto">根据本题目的形式,我们采用 <code>direct proof</code></li>
<li dir="auto">几个要点
<ul dir="auto">
<li dir="auto">这里的 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span></span></span></span> 和 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi></mrow><annotation encoding="application/x-tex">b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">b</span></span></span></span> 是任意的正整数,不是特定的正整数</li>
<li dir="auto">我们需要找到存在的整数 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span></span></span></span> 和 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>l</mi></mrow><annotation encoding="application/x-tex">l</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal" style="margin-right:0.01968em;">l</span></span></span></span></li>
<li dir="auto"><code>gcd</code> 是最大公约数的定义,有两个要点,一个是最大,一个是公约数</li>
<li dir="auto"><code>gcd</code> 的形式必须满足 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mi>k</mi><mo>+</mo><mi>b</mi><mi>l</mi></mrow><annotation encoding="application/x-tex">ak+bl</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7778em;vertical-align:-0.0833em;"></span><span class="mord mathnormal" style="margin-right:0.03148em;">ak</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">b</span><span class="mord mathnormal" style="margin-right:0.01968em;">l</span></span></span></span></li>
</ul>
</li>
<li dir="auto">如何入手
<ul dir="auto">
<li dir="auto">从左往右探讨
<ul dir="auto">
<li dir="auto"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span></span></span></span> 和 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi></mrow><annotation encoding="application/x-tex">b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">b</span></span></span></span> 的最大公约数为 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi></mrow><annotation encoding="application/x-tex">d</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">d</span></span></span></span>,那么存在 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi><mo>∣</mo><mi>a</mi></mrow><annotation encoding="application/x-tex">d\mid a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">d</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∣</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span></span></span></span> 且 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi><mo>∣</mo><mi>b</mi></mrow><annotation encoding="application/x-tex">d\mid b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">d</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∣</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">b</span></span></span></span> 。也就是说存在 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>k</mi><mn>1</mn></msub></mrow><annotation encoding="application/x-tex">k_{1}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8444em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0315em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> 和 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>k</mi><mn>2</mn></msub></mrow><annotation encoding="application/x-tex">k_{2}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8444em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0315em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span>,使得 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi><mo>=</mo><msub><mi>k</mi><mn>1</mn></msub><mi>a</mi></mrow><annotation encoding="application/x-tex">d=k_{1}a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">d</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8444em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0315em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal">a</span></span></span></span>,且 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi><mo>=</mo><msub><mi>k</mi><mn>2</mn></msub><mi>b</mi></mrow><annotation encoding="application/x-tex">d=k_{2}b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">d</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8444em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0315em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal">b</span></span></span></span></li>
<li dir="auto">此外 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi></mrow><annotation encoding="application/x-tex">d</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">d</span></span></span></span> 大于任何其他的约数(怎么保证?)
<ul class="contains-task-list code-line" dir="auto">
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> <code>gcd</code> 的性质学习</li>
</ul>
</li>
<li dir="auto">我们需要证明存在某个 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>k</mi><mo separator="true">,</mo><mi>l</mi></mrow><annotation encoding="application/x-tex">k,l</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.01968em;">l</span></span></span></span>,使得 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi></mrow><annotation encoding="application/x-tex">d</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">d</span></span></span></span> 的形式为 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mi>k</mi><mo>+</mo><mi>b</mi><mi>l</mi></mrow><annotation encoding="application/x-tex">ak+bl</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7778em;vertical-align:-0.0833em;"></span><span class="mord mathnormal" style="margin-right:0.03148em;">ak</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">b</span><span class="mord mathnormal" style="margin-right:0.01968em;">l</span></span></span></span>(怎么证明?卡壳了...)</li>
</ul>
</li>
<li dir="auto">从右往左探讨
<ul dir="auto">
<li dir="auto">首先讨论 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mi>x</mi><mo>+</mo><mi>b</mi><mi>y</mi></mrow><annotation encoding="application/x-tex">ax+by</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">a</span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">b</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span> 的范围,其包括了很多正整数和负整数还有 0</li>
<li dir="auto">我们需要明确的是,无论 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span></span></span></span> 和 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi></mrow><annotation encoding="application/x-tex">b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">b</span></span></span></span> 是正还是负,其最大公约数都为正数且小于 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span></span></span></span> 和 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi></mrow><annotation encoding="application/x-tex">b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">b</span></span></span></span>,那么如何确定这个最大公约数是多少?</li>
<li dir="auto">卡壳了...</li>
</ul>
</li>
</ul>
</li>
</ul>
</li>
<li dir="auto">答案解析
<ul dir="auto">
<li dir="auto">Division theorem 及其证明复习:Any integer a can be divided by a non-zero integer b, resulting in a quotient q and remainder r. Given integers a and b with b > 0, there exist unique integers q and r for which <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>=</mo><mi>q</mi><mi>b</mi><mo>+</mo><mi>r</mi></mrow><annotation encoding="application/x-tex">a = qb + r</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">q</span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">r</span></span></span></span> and <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn><mo>≤</mo><mi>r</mi><mo><</mo><mi>b</mi></mrow><annotation encoding="application/x-tex">0\le{r}\lt{b}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7804em;vertical-align:-0.136em;"></span><span class="mord">0</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≤</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"><</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord"><span class="mord mathnormal">b</span></span></span></span></span></li>
<li dir="auto">首先讨论 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi><mo>=</mo><mo stretchy="false">{</mo><mi>a</mi><mi>x</mi><mo>+</mo><mi>b</mi><mi>y</mi><mi mathvariant="normal">∣</mi><mi>x</mi><mo separator="true">,</mo><mi>y</mi><mo>∈</mo><mi>Z</mi><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">A=\{ax+by|x,y\in{Z}\}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord mathnormal">a</span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">b</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mord">∣</span><span class="mord mathnormal">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">Z</span></span><span class="mclose">}</span></span></span></span> 的范围,其包含正数,负数和 0</li>
<li dir="auto">令 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi></mrow><annotation encoding="application/x-tex">d</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">d</span></span></span></span> 为 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">A</span></span></span></span> 中最小的正数,那么存在 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span></span></span></span> 和 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>l</mi></mrow><annotation encoding="application/x-tex">l</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal" style="margin-right:0.01968em;">l</span></span></span></span> 满足 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi><mo>=</mo><mi>k</mi><mi>a</mi><mo>+</mo><mi>l</mi><mi>b</mi><mo separator="true">,</mo><mi>k</mi><mo separator="true">,</mo><mi>l</mi><mo>∈</mo><mi>Z</mi></mrow><annotation encoding="application/x-tex">d=ka+lb,k,l\in{Z}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">d</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7778em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">ka</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.01968em;">l</span><span class="mord mathnormal">b</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.01968em;">l</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">Z</span></span></span></span></span>(后面会发现为什么 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">A</span></span></span></span> 中最小的正数就刚好是 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>g</mi><mi>c</mi><mi>d</mi><mo stretchy="false">(</mo><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">gcd(a,b)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mord mathnormal">c</span><span class="mord mathnormal">d</span><span class="mopen">(</span><span class="mord mathnormal">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">b</span><span class="mclose">)</span></span></span></span>)</li>
<li dir="auto">下面我们来证这个数是 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>g</mi><mi>c</mi><mi>d</mi><mo stretchy="false">(</mo><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">gcd(a,b)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mord mathnormal">c</span><span class="mord mathnormal">d</span><span class="mopen">(</span><span class="mord mathnormal">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">b</span><span class="mclose">)</span></span></span></span>,证明分两步走。一是证明这个数是 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span></span></span></span> 和 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi></mrow><annotation encoding="application/x-tex">b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">b</span></span></span></span> 的公约数,二是证明这个数是公约数里面最大的</li>
<li dir="auto">首先证明 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi><mi mathvariant="normal">∣</mi><mi>a</mi></mrow><annotation encoding="application/x-tex">d|a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">d</span><span class="mord">∣</span><span class="mord mathnormal">a</span></span></span></span> 和 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi><mi mathvariant="normal">∣</mi><mi>b</mi></mrow><annotation encoding="application/x-tex">d|b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">d</span><span class="mord">∣</span><span class="mord mathnormal">b</span></span></span></span>
<ul dir="auto">
<li dir="auto">设 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>=</mo><mi>q</mi><mi>d</mi><mo>+</mo><mi>r</mi></mrow><annotation encoding="application/x-tex">a=qd+r</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">q</span><span class="mord mathnormal">d</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">r</span></span></span></span>(为什么这么写,是因为我们一开始不知道 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span></span></span></span> 是否能整除 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi></mrow><annotation encoding="application/x-tex">d</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">d</span></span></span></span>),那么存在唯一的 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>q</mi></mrow><annotation encoding="application/x-tex">q</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">q</span></span></span></span> 和 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn><mo>≤</mo><mi>r</mi><mo><</mo><mi>d</mi></mrow><annotation encoding="application/x-tex">0\le{r}\lt{d}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7804em;vertical-align:-0.136em;"></span><span class="mord">0</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≤</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"><</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord"><span class="mord mathnormal">d</span></span></span></span></span>,使得式子成立</li>
<li dir="auto">我们要证明整除,就需要证明 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>r</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">r=0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span>。由之前的式子可得 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>r</mi><mo>=</mo><mi>a</mi><mo>−</mo><mi>q</mi><mi>d</mi><mo>=</mo><mi>a</mi><mo>−</mo><mi>q</mi><mo stretchy="false">(</mo><mi>k</mi><mi>a</mi><mo>+</mo><mi>l</mi><mi>b</mi><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><mi>q</mi><mi>k</mi><mo stretchy="false">)</mo><mi>a</mi><mo>−</mo><mi>q</mi><mi>l</mi><mi>b</mi></mrow><annotation encoding="application/x-tex">r=a-qd=a-q(ka+lb)=(1-qk)a-qlb</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">q</span><span class="mord mathnormal">d</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">q</span><span class="mopen">(</span><span class="mord mathnormal">ka</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.01968em;">l</span><span class="mord mathnormal">b</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">q</span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="mclose">)</span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.01968em;">ql</span><span class="mord mathnormal">b</span></span></span></span>。因此 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>r</mi></mrow><annotation encoding="application/x-tex">r</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">r</span></span></span></span> 存在 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mi>x</mi><mo>+</mo><mi>b</mi><mi>y</mi></mrow><annotation encoding="application/x-tex">ax+by</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">a</span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">b</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span> 的结构,属于集合 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">A</span></span></span></span>。<strong>又因为 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn><mo>≤</mo><mi>r</mi><mo><</mo><mi>d</mi></mrow><annotation encoding="application/x-tex">0\le{r}\lt{d}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7804em;vertical-align:-0.136em;"></span><span class="mord">0</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≤</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"><</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord"><span class="mord mathnormal">d</span></span></span></span></span> 且 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi></mrow><annotation encoding="application/x-tex">d</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">d</span></span></span></span> 是集合 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">A</span></span></span></span> 中最小的正整数</strong>,因此 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>r</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">r=0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span>。可得 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi><mi mathvariant="normal">∣</mi><mi>a</mi></mrow><annotation encoding="application/x-tex">d|a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">d</span><span class="mord">∣</span><span class="mord mathnormal">a</span></span></span></span></li>
<li dir="auto"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi><mi mathvariant="normal">∣</mi><mi>b</mi></mrow><annotation encoding="application/x-tex">d|b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">d</span><span class="mord">∣</span><span class="mord mathnormal">b</span></span></span></span> 的证明方法同上。</li>
</ul>
</li>
<li dir="auto">下面我们证明 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi></mrow><annotation encoding="application/x-tex">d</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">d</span></span></span></span> 是公约数里面最大的
<ul dir="auto">
<li dir="auto">因为 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>g</mi><mi>c</mi><mi>d</mi><mo stretchy="false">(</mo><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">gcd(a,b)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mord mathnormal">c</span><span class="mord mathnormal">d</span><span class="mopen">(</span><span class="mord mathnormal">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">b</span><span class="mclose">)</span></span></span></span> 是 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span></span></span></span> 和 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi></mrow><annotation encoding="application/x-tex">b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">b</span></span></span></span> 的最大公约数</li>
<li dir="auto">那么设 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>=</mo><mi>g</mi><mi>c</mi><mi>d</mi><mo stretchy="false">(</mo><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo stretchy="false">)</mo><mi>m</mi></mrow><annotation encoding="application/x-tex">a=gcd(a,b)m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mord mathnormal">c</span><span class="mord mathnormal">d</span><span class="mopen">(</span><span class="mord mathnormal">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">b</span><span class="mclose">)</span><span class="mord mathnormal">m</span></span></span></span> ,<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi><mo>=</mo><mi>g</mi><mi>c</mi><mi>d</mi><mo stretchy="false">(</mo><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo stretchy="false">)</mo><mi>n</mi></mrow><annotation encoding="application/x-tex">b=gcd(a,b)n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mord mathnormal">c</span><span class="mord mathnormal">d</span><span class="mopen">(</span><span class="mord mathnormal">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">b</span><span class="mclose">)</span><span class="mord mathnormal">n</span></span></span></span></li>
<li dir="auto">那么 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi><mo>=</mo><mi>k</mi><mi>a</mi><mo>+</mo><mi>l</mi><mi>b</mi><mo>=</mo><mi>k</mi><mi>m</mi><mi>g</mi><mi>c</mi><mi>d</mi><mo stretchy="false">(</mo><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo stretchy="false">)</mo><mo>+</mo><mi>l</mi><mi>n</mi><mi>g</mi><mi>c</mi><mi>d</mi><mo stretchy="false">(</mo><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo stretchy="false">)</mo><mo>=</mo><mi>g</mi><mi>c</mi><mi>d</mi><mo stretchy="false">(</mo><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>k</mi><mi>m</mi><mo>+</mo><mi>l</mi><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">d=ka+lb=kmgcd(a,b)+lngcd(a,b)=gcd(a,b)(km+ln)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">d</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7778em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">ka</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal" style="margin-right:0.01968em;">l</span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">km</span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mord mathnormal">c</span><span class="mord mathnormal">d</span><span class="mopen">(</span><span class="mord mathnormal">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">b</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.01968em;">l</span><span class="mord mathnormal">n</span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mord mathnormal">c</span><span class="mord mathnormal">d</span><span class="mopen">(</span><span class="mord mathnormal">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">b</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mord mathnormal">c</span><span class="mord mathnormal">d</span><span class="mopen">(</span><span class="mord mathnormal">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">b</span><span class="mclose">)</span><span class="mopen">(</span><span class="mord mathnormal">km</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.01968em;">l</span><span class="mord mathnormal">n</span><span class="mclose">)</span></span></span></span></li>
<li dir="auto">因此 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi><mo>≥</mo><mrow><mi>g</mi><mi>c</mi><mi>d</mi><mo stretchy="false">(</mo><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo stretchy="false">)</mo></mrow></mrow><annotation encoding="application/x-tex">d\ge{gcd(a,b)}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8304em;vertical-align:-0.136em;"></span><span class="mord mathnormal">d</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≥</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mord mathnormal">c</span><span class="mord mathnormal">d</span><span class="mopen">(</span><span class="mord mathnormal">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">b</span><span class="mclose">)</span></span></span></span></span></li>
<li dir="auto">又因为 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi></mrow><annotation encoding="application/x-tex">d</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">d</span></span></span></span> 是 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo separator="true">,</mo><mi>b</mi></mrow><annotation encoding="application/x-tex">a,b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">b</span></span></span></span> 的公约数,不可能大于 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>g</mi><mi>c</mi><mi>d</mi><mo stretchy="false">(</mo><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">gcd(a,b)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mord mathnormal">c</span><span class="mord mathnormal">d</span><span class="mopen">(</span><span class="mord mathnormal">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">b</span><span class="mclose">)</span></span></span></span></li>
<li dir="auto">因此 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi><mo>=</mo><mi>g</mi><mi>c</mi><mi>d</mi><mo stretchy="false">(</mo><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">d=gcd(a,b)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">d</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mord mathnormal">c</span><span class="mord mathnormal">d</span><span class="mopen">(</span><span class="mord mathnormal">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">b</span><span class="mclose">)</span></span></span></span></li>
</ul>
</li>
<li dir="auto">证明完结</li>
</ul>
</li>
</ul>
</li>
</ul>
</li>
<li dir="auto">唯一性例题
<ul dir="auto">
<li dir="auto">Suppose <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo>∈</mo><mi>N</mi></mrow><annotation encoding="application/x-tex">a,b\in{N}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">N</span></span></span></span></span>. Thenthere exists a unique <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi><mo>∈</mo><mi>N</mi></mrow><annotation encoding="application/x-tex">d\in N</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7335em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">d</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">N</span></span></span></span> for which: An integer <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi></mrow><annotation encoding="application/x-tex">m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">m</span></span></span></span> is a multiple of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi></mrow><annotation encoding="application/x-tex">d</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">d</span></span></span></span> if and only if <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi><mo>=</mo><mi>a</mi><mi>x</mi><mo>+</mo><mi>b</mi><mi>y</mi></mrow><annotation encoding="application/x-tex">m=ax+by</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">m</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">a</span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">b</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span> for some <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo separator="true">,</mo><mi>y</mi><mo>∈</mo><mi>Z</mi></mrow><annotation encoding="application/x-tex">x,y\in Z</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7335em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">Z</span></span></span></span>.</li>
<li dir="auto">几个要点
<ul dir="auto">
<li dir="auto"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo separator="true">,</mo><mi>d</mi></mrow><annotation encoding="application/x-tex">a,b,d</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">b</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">d</span></span></span></span> 是自然数</li>
<li dir="auto">需要证明 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi></mrow><annotation encoding="application/x-tex">d</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">d</span></span></span></span> 的存在及<strong>唯一性</strong></li>
<li dir="auto">需要证明 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mtext> </mtext><mo>⟹</mo><mtext> </mtext><mi>Q</mi></mrow><annotation encoding="application/x-tex">P\implies{Q}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7073em;vertical-align:-0.024em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⟹</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8778em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal">Q</span></span></span></span></span> 和 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>Q</mi><mtext> </mtext><mo>⟹</mo><mtext> </mtext><mi>P</mi></mrow><annotation encoding="application/x-tex">Q\implies{P}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8778em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">Q</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⟹</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">P</span></span></span></span></span></li>
<li dir="auto"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi></mrow><annotation encoding="application/x-tex">P</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span></span></span></span> 是 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi><mo>∣</mo><mi>m</mi></mrow><annotation encoding="application/x-tex">d\mid m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">d</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∣</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">m</span></span></span></span></li>
<li dir="auto"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>Q</mi></mrow><annotation encoding="application/x-tex">Q</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8778em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">Q</span></span></span></span> 是 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi><mo>=</mo><mi>a</mi><mi>x</mi><mo>+</mo><mi>b</mi><mi>y</mi><mo separator="true">,</mo><mi>x</mi><mo separator="true">,</mo><mi>y</mi><mo>∈</mo><mi>Z</mi></mrow><annotation encoding="application/x-tex">m=ax+by,x,y\in{Z}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">m</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">a</span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">b</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">Z</span></span></span></span></span></li>
</ul>
</li>
<li dir="auto">答案解析
<ul dir="auto">
<li dir="auto">我们首先需要证明存在,然后证明唯一性</li>
<li dir="auto">存在证明
<ul dir="auto">
<li dir="auto"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mtext> </mtext><mo>⟹</mo><mtext> </mtext><mi>Q</mi></mrow><annotation encoding="application/x-tex">P\implies{Q}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7073em;vertical-align:-0.024em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⟹</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8778em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal">Q</span></span></span></span></span> 证明
<ul dir="auto">
<li dir="auto">我们<strong>设 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi><mo>=</mo><mi>g</mi><mi>c</mi><mi>d</mi><mo stretchy="false">(</mo><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">d=gcd(a,b)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">d</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mord mathnormal">c</span><span class="mord mathnormal">d</span><span class="mopen">(</span><span class="mord mathnormal">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">b</span><span class="mclose">)</span></span></span></span></strong>,且 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi><mo>=</mo><mi>d</mi><mi>n</mi><mo separator="true">,</mo><mi>n</mi><mo>∈</mo><mi>Z</mi></mrow><annotation encoding="application/x-tex">m=dn,n\in{Z}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">m</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">d</span><span class="mord mathnormal">n</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">Z</span></span></span></span></span>
<ul dir="auto">
<li dir="auto">==注意:== 因为对于 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi></mrow><annotation encoding="application/x-tex">m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">m</span></span></span></span> ,当 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>=</mo><mn>1</mn><mo separator="true">,</mo><mi>y</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">x=1,y=0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8389em;vertical-align:-0.1944em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span> 时 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi><mo>=</mo><mi>a</mi></mrow><annotation encoding="application/x-tex">m=a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">m</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span></span></span></span>,有 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span></span></span></span> 是 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi></mrow><annotation encoding="application/x-tex">d</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">d</span></span></span></span> 的倍数;当 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>=</mo><mn>0</mn><mo separator="true">,</mo><mi>y</mi><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">x=0,y=1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8389em;vertical-align:-0.1944em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span> 时 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi><mo>=</mo><mi>b</mi></mrow><annotation encoding="application/x-tex">m=b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">m</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">b</span></span></span></span>,有 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi></mrow><annotation encoding="application/x-tex">b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">b</span></span></span></span> 是 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi></mrow><annotation encoding="application/x-tex">d</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">d</span></span></span></span> 的倍数;但是令 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi><mo>=</mo><mi>g</mi><mi>c</mi><mi>d</mi><mo stretchy="false">(</mo><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">d=gcd(a,b)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">d</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mord mathnormal">c</span><span class="mord mathnormal">d</span><span class="mopen">(</span><span class="mord mathnormal">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">b</span><span class="mclose">)</span></span></span></span> 只能提供一个存在性的例子,至于为什么它是唯一的而其他的 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span></span></span></span> 和 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi></mrow><annotation encoding="application/x-tex">b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">b</span></span></span></span> 的公约数不满足题目条件,后面在证明唯一性的时候会看到为什么</li>
</ul>
</li>
<li dir="auto">根据前一问的结论,我们知道存在 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>k</mi><mo separator="true">,</mo><mi>l</mi><mo>∈</mo><mi>Z</mi></mrow><annotation encoding="application/x-tex">k,l\in{Z}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.01968em;">l</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">Z</span></span></span></span></span>,使得 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi><mo>=</mo><mi>k</mi><mi>a</mi><mo>+</mo><mi>l</mi><mi>b</mi></mrow><annotation encoding="application/x-tex">d=ka+lb</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">d</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7778em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">ka</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal" style="margin-right:0.01968em;">l</span><span class="mord mathnormal">b</span></span></span></span></li>
<li dir="auto">带入到 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi><mo>=</mo><mi>d</mi><mi>n</mi></mrow><annotation encoding="application/x-tex">m=dn</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">m</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">d</span><span class="mord mathnormal">n</span></span></span></span> 中,可得 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi><mo>=</mo><mi>n</mi><mo stretchy="false">(</mo><mi>k</mi><mi>a</mi><mo>+</mo><mi>l</mi><mi>b</mi><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><mi>n</mi><mi>k</mi><mo stretchy="false">)</mo><mi>a</mi><mo>+</mo><mo stretchy="false">(</mo><mi>n</mi><mi>l</mi><mo stretchy="false">)</mo><mi>b</mi></mrow><annotation encoding="application/x-tex">m=n(ka+lb)=(nk)a+(nl)b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">m</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">n</span><span class="mopen">(</span><span class="mord mathnormal">ka</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.01968em;">l</span><span class="mord mathnormal">b</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.03148em;">nk</span><span class="mclose">)</span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">n</span><span class="mord mathnormal" style="margin-right:0.01968em;">l</span><span class="mclose">)</span><span class="mord mathnormal">b</span></span></span></span></li>
<li dir="auto">因此有 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi><mo>=</mo><mi>a</mi><mi>x</mi><mo>+</mo><mi>b</mi><mi>y</mi><mo stretchy="false">(</mo><mi>x</mi><mo>=</mo><mi>n</mi><mi>k</mi><mo separator="true">,</mo><mi>y</mi><mo>=</mo><mi>n</mi><mi>l</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">m=ax+by(x=nk,y=nl)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">m</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">a</span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">b</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03148em;">nk</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">n</span><span class="mord mathnormal" style="margin-right:0.01968em;">l</span><span class="mclose">)</span></span></span></span></li>
</ul>
</li>
<li dir="auto"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>Q</mi><mtext> </mtext><mo>⟹</mo><mtext> </mtext><mi>P</mi></mrow><annotation encoding="application/x-tex">Q\implies{P}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8778em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">Q</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⟹</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">P</span></span></span></span></span> 证明
<ul dir="auto">
<li dir="auto">因为有 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi><mo>=</mo><mi>a</mi><mi>x</mi><mo>+</mo><mi>b</mi><mi>y</mi><mo separator="true">,</mo><mi>x</mi><mo separator="true">,</mo><mi>y</mi><mo>∈</mo><mi>Z</mi></mrow><annotation encoding="application/x-tex">m=ax+by,x,y\in{Z}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">m</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">a</span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">b</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">Z</span></span></span></span></span></li>
<li dir="auto">又因为 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi><mo>=</mo><mi>g</mi><mi>c</mi><mi>d</mi><mo stretchy="false">(</mo><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">d=gcd(a,b)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">d</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mord mathnormal">c</span><span class="mord mathnormal">d</span><span class="mopen">(</span><span class="mord mathnormal">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">b</span><span class="mclose">)</span></span></span></span>,因此有 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>=</mo><mi>d</mi><mi>c</mi><mo separator="true">,</mo><mi>b</mi><mo>=</mo><mi>d</mi><mi>e</mi><mo separator="true">,</mo><mi>c</mi><mo separator="true">,</mo><mi>e</mi><mo>∈</mo><mi>Z</mi></mrow><annotation encoding="application/x-tex">a=dc,b=de,c,e\in{Z}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">d</span><span class="mord mathnormal">c</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">d</span><span class="mord mathnormal">e</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">c</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">e</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">Z</span></span></span></span></span>,那么 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi><mo>=</mo><mo stretchy="false">(</mo><mi>d</mi><mi>c</mi><mo stretchy="false">)</mo><mi>x</mi><mo>+</mo><mo stretchy="false">(</mo><mi>d</mi><mi>e</mi><mo stretchy="false">)</mo><mi>y</mi><mo>=</mo><mi>d</mi><mo stretchy="false">(</mo><mi>c</mi><mi>x</mi><mo>+</mo><mi>e</mi><mi>y</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">m=(dc)x+(de)y=d(cx+ey)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">m</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">d</span><span class="mord mathnormal">c</span><span class="mclose">)</span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">d</span><span class="mord mathnormal">e</span><span class="mclose">)</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">d</span><span class="mopen">(</span><span class="mord mathnormal">c</span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">ey</span><span class="mclose">)</span></span></span></span>,因此有 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi><mo>∣</mo><mi>m</mi></mrow><annotation encoding="application/x-tex">d\mid m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">d</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∣</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">m</span></span></span></span></li>
</ul>
</li>
</ul>
</li>
<li dir="auto">唯一性证明
<ul dir="auto">
<li dir="auto">唯一性的证明方法是引入 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>d</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup></mrow><annotation encoding="application/x-tex">d'</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7519em;"></span><span class="mord"><span class="mord mathnormal">d</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span></span></span></span>,<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>d</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup></mrow><annotation encoding="application/x-tex">d'</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7519em;"></span><span class="mord"><span class="mord mathnormal">d</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span></span></span></span> 满足 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>d</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo>∣</mo><mi>m</mi></mrow><annotation encoding="application/x-tex">d'\mid m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0019em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">d</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∣</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">m</span></span></span></span></li>
<li dir="auto">我们最后想要得到的结论是 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>d</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo>=</mo><mi>d</mi></mrow><annotation encoding="application/x-tex">d'=d</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7519em;"></span><span class="mord"><span class="mord mathnormal">d</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">d</span></span></span></span></li>
<li dir="auto">唯一性的主要证明方法类似前面的 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi><mo>=</mo><mi>n</mi></mrow><annotation encoding="application/x-tex">m=n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">m</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">n</span></span></span></span> 的相关证明。要证明 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi><mo>=</mo><mi>n</mi></mrow><annotation encoding="application/x-tex">m=n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">m</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">n</span></span></span></span>,就先证明 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi><mo>≥</mo><mi>n</mi></mrow><annotation encoding="application/x-tex">m\ge{n}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7719em;vertical-align:-0.136em;"></span><span class="mord mathnormal">m</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≥</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord"><span class="mord mathnormal">n</span></span></span></span></span>,然后证明 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi><mo>≤</mo><mi>n</mi></mrow><annotation encoding="application/x-tex">m\le{n}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7719em;vertical-align:-0.136em;"></span><span class="mord mathnormal">m</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≤</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord"><span class="mord mathnormal">n</span></span></span></span></span></li>
<li dir="auto">首先证明 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>d</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo>≤</mo><mi>d</mi></mrow><annotation encoding="application/x-tex">d'\le{d}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8879em;vertical-align:-0.136em;"></span><span class="mord"><span class="mord mathnormal">d</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≤</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord"><span class="mord mathnormal">d</span></span></span></span></span>
<ul dir="auto">
<li dir="auto">根据定理,当 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>=</mo><mn>1</mn><mo separator="true">,</mo><mi>y</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">x=1,y=0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8389em;vertical-align:-0.1944em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span> 时,<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi><mo>=</mo><mi>a</mi></mrow><annotation encoding="application/x-tex">m=a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">m</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span></span></span></span> 是 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>d</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup></mrow><annotation encoding="application/x-tex">d'</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7519em;"></span><span class="mord"><span class="mord mathnormal">d</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span></span></span></span> 的倍数;当 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>=</mo><mn>0</mn><mo separator="true">,</mo><mi>y</mi><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">x=0,y=1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8389em;vertical-align:-0.1944em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span> 时,<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi><mo>=</mo><mi>b</mi></mrow><annotation encoding="application/x-tex">m=b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">m</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">b</span></span></span></span> 是 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>d</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup></mrow><annotation encoding="application/x-tex">d'</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7519em;"></span><span class="mord"><span class="mord mathnormal">d</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span></span></span></span> 的倍数</li>
<li dir="auto">因为 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>d</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo>∣</mo><mi>a</mi></mrow><annotation encoding="application/x-tex">d'\mid a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0019em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">d</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∣</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span></span></span></span> 且 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>d</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo>∣</mo><mi>b</mi></mrow><annotation encoding="application/x-tex">d'\mid b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0019em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">d</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∣</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">b</span></span></span></span>,因此有 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>d</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup></mrow><annotation encoding="application/x-tex">d'</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7519em;"></span><span class="mord"><span class="mord mathnormal">d</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span></span></span></span> 是 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo separator="true">,</mo><mi>b</mi></mrow><annotation encoding="application/x-tex">a,b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">b</span></span></span></span> 的公约数,有 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>d</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo>≤</mo><mrow><mi>g</mi><mi>c</mi><mi>d</mi><mo stretchy="false">(</mo><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo stretchy="false">)</mo></mrow></mrow><annotation encoding="application/x-tex">d'\le{gcd(a,b)}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8879em;vertical-align:-0.136em;"></span><span class="mord"><span class="mord mathnormal">d</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≤</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mord mathnormal">c</span><span class="mord mathnormal">d</span><span class="mopen">(</span><span class="mord mathnormal">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">b</span><span class="mclose">)</span></span></span></span></span></li>
</ul>
</li>
<li dir="auto">然后证明 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>d</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo>≥</mo><mi>d</mi></mrow><annotation encoding="application/x-tex">d'\ge{d}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8879em;vertical-align:-0.136em;"></span><span class="mord"><span class="mord mathnormal">d</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≥</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord"><span class="mord mathnormal">d</span></span></span></span></span>
<ul dir="auto">
<li dir="auto">当 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi><mo>=</mo><msup><mi>d</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo>⋅</mo><mn>1</mn><mo>=</mo><msup><mi>d</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup></mrow><annotation encoding="application/x-tex">m=d'\cdot 1=d'</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">m</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7519em;"></span><span class="mord"><span class="mord mathnormal">d</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7519em;"></span><span class="mord"><span class="mord mathnormal">d</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span></span></span></span>,又因为 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi><mo>=</mo><msup><mi>d</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup></mrow><annotation encoding="application/x-tex">m=d'</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">m</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7519em;"></span><span class="mord"><span class="mord mathnormal">d</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span></span></span></span>,而 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi><mo>=</mo><msup><mi>d</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo>=</mo><mi>a</mi><mi>x</mi><mo>+</mo><mi>b</mi><mi>y</mi></mrow><annotation encoding="application/x-tex">m=d'=ax+by</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">m</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7519em;"></span><span class="mord"><span class="mord mathnormal">d</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">a</span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">b</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span></li>
<li dir="auto">由前面的 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>=</mo><mi>d</mi><mi>c</mi><mo separator="true">,</mo><mi>b</mi><mo>=</mo><mi>d</mi><mi>e</mi></mrow><annotation encoding="application/x-tex">a=dc,b=de</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">d</span><span class="mord mathnormal">c</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">d</span><span class="mord mathnormal">e</span></span></span></span> 可得,<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>d</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo>=</mo><mi>d</mi><mi>c</mi><mi>x</mi><mo>+</mo><mi>d</mi><mi>e</mi><mi>y</mi><mo>=</mo><mi>d</mi><mo stretchy="false">(</mo><mi>c</mi><mi>x</mi><mo>+</mo><mi>e</mi><mi>y</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">d'=dcx+dey=d(cx+ey)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7519em;"></span><span class="mord"><span class="mord mathnormal">d</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7778em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">d</span><span class="mord mathnormal">c</span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">d</span><span class="mord mathnormal" style="margin-right:0.03588em;">ey</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">d</span><span class="mopen">(</span><span class="mord mathnormal">c</span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">ey</span><span class="mclose">)</span></span></span></span></li>
<li dir="auto">因此 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>d</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo>≥</mo><mi>d</mi></mrow><annotation encoding="application/x-tex">d'\ge{d}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8879em;vertical-align:-0.136em;"></span><span class="mord"><span class="mord mathnormal">d</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≥</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord"><span class="mord mathnormal">d</span></span></span></span></span></li>
</ul>
</li>
<li dir="auto">综合可得 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi><mo>=</mo><msup><mi>d</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup></mrow><annotation encoding="application/x-tex">d=d'</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">d</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7519em;"></span><span class="mord"><span class="mord mathnormal">d</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span></span></span></span>,唯一性证毕</li>
</ul>
</li>
</ul>
</li>
</ul>
</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 需要更多存在和唯一性证明的案例</li>
</ul>
</li>
<li dir="auto"><code>Constructive</code> vs <code>Non-constructive</code> proof
<ul dir="auto">
<li dir="auto">定义
<ul class="contains-task-list code-line" dir="auto">
<li dir="auto"><code>Contructive proof</code> display an explicit example that proves the theorem;</li>
<li dir="auto"><code>Non-constructive proof</code> prove an example exists without actually giving it.</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox" checked=""type="checkbox"> 这两者的定义有什么区别吗?
<ul dir="auto">
<li dir="auto"><code>non-Constructive proof</code> 无法给出直接的案例,你只能知道它存不存在</li>
<li dir="auto"><code>Constructive proof</code> 可以给出案例</li>
</ul>
</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 公理和排中律又是什么东西?</li>
</ul>
</li>
<li dir="auto">经典例题:证明存在能够使 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>x</mi><mi>y</mi></msup></mrow><annotation encoding="application/x-tex">x^y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6644em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6644em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">y</span></span></span></span></span></span></span></span></span></span></span> 为有理数的无理数 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">x</span></span></span></span> 和 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi></mrow><annotation encoding="application/x-tex">y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span>(可能相等)</li>
</ul>
</li>
</ul>
</li>
<li dir="auto">经典例题
<ul class="contains-task-list code-line" dir="auto">
<li dir="auto">If <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>∈</mo><mi>Z</mi></mrow><annotation encoding="application/x-tex">a\in{Z}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">Z</span></span></span></span></span>, then <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>a</mi><mn>2</mn></msup><mo>≡</mo><mi>a</mi></mrow><annotation encoding="application/x-tex">a^2\equiv{a}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≡</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord"><span class="mord mathnormal">a</span></span></span></span></span> (mod 3)
<ul class="contains-task-list code-line" dir="auto">
<li dir="auto">相当于证明 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3</mn><mo>∣</mo><msup><mi>a</mi><mn>3</mn></msup><mo>−</mo><mi>a</mi></mrow><annotation encoding="application/x-tex">3\mid a^3-a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">3</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∣</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8974em;vertical-align:-0.0833em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span></span></span></span></li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> <code>Fermat's little theorem</code> 学习(数论,质数相关)</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 质数分解,求模运算和同余相关内容学习</li>
<li dir="auto">这和之前的一个题目类似,证明 5 个连续数字的乘积总是 120 的倍数
<ul dir="auto">
<li dir="auto">一方面这个可以使用组合数证明</li>
<li dir="auto">另一方面,连续三个数字,总有一个是三的倍数,因此 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>a</mi><mn>3</mn></msup><mo>−</mo><mi>a</mi><mo>=</mo><mo stretchy="false">(</mo><mi>a</mi><mo>+</mo><mn>1</mn><mo stretchy="false">)</mo><mi>a</mi><mo stretchy="false">(</mo><mi>a</mi><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">a^3-a=(a+1)a(a-1)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8974em;vertical-align:-0.0833em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">1</span><span class="mclose">)</span><span class="mord mathnormal">a</span><span class="mopen">(</span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">1</span><span class="mclose">)</span></span></span></span> 总是 3 的倍数,那么得出题目结论</li>
</ul>
</li>
</ul>
</li>
<li dir="auto">Suppose a,b Z. If ab is odd, then <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">a^2+b^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8974em;vertical-align:-0.0833em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span> is even.
<ul dir="auto">
<li dir="auto">存在隐含条件:<strong><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mi>b</mi></mrow><annotation encoding="application/x-tex">ab</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">ab</span></span></span></span> 如果是奇数,那么 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span></span></span></span> 和 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi></mrow><annotation encoding="application/x-tex">b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">b</span></span></span></span> 都为奇数</strong>。因为一旦其中有一个是偶数,那么乘积就含有因子 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2</mn></mrow><annotation encoding="application/x-tex">2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">2</span></span></span></span>,就不会是奇数了。</li>
</ul>
</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 巩固 <code>gcd</code> 和 <code>lcm</code> 的相关恒等证明问题(使用其本身的性质和题目所给的条件,分别推导出 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi><mo>≤</mo><mi>n</mi></mrow><annotation encoding="application/x-tex">m\le{n}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7719em;vertical-align:-0.136em;"></span><span class="mord mathnormal">m</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≤</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord"><span class="mord mathnormal">n</span></span></span></span></span> 和 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mo>≤</mo><mi>m</mi></mrow><annotation encoding="application/x-tex">n\le{m}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7719em;vertical-align:-0.136em;"></span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≤</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord"><span class="mord mathnormal">m</span></span></span></span></span>)</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> If <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mo>∈</mo><mi>Z</mi></mrow><annotation encoding="application/x-tex">n\in{Z}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">Z</span></span></span></span></span>, then <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>g</mi><mi>c</mi><mi>d</mi><mo stretchy="false">(</mo><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn><mo separator="true">,</mo><mn>4</mn><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn><mo stretchy="false">)</mo><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">gcd(2n+1,4n^2+1)=1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mord mathnormal">c</span><span class="mord mathnormal">d</span><span class="mopen">(</span><span class="mord">2</span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0085em;vertical-align:-0.1944em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">4</span><span class="mord"><span class="mord mathnormal">n</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">1</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span>
<ul dir="auto">
<li dir="auto">令 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi></mrow><annotation encoding="application/x-tex">d</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">d</span></span></span></span> 为公因式</li>
<li dir="auto"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi><mi>x</mi><mo>=</mo><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">dx=2n+1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">d</span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">2</span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span></li>
<li dir="auto"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi><mi>y</mi><mo>=</mo><mn>4</mn><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">dy=4n^2+1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">d</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8974em;vertical-align:-0.0833em;"></span><span class="mord">4</span><span class="mord"><span class="mord mathnormal">n</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span></li>
<li dir="auto">使用了非常巧妙的因式分解,将 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>4</mn><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">4n^2+1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8974em;vertical-align:-0.0833em;"></span><span class="mord">4</span><span class="mord"><span class="mord mathnormal">n</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span> 分解为 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>4</mn><msup><mi>n</mi><mn>2</mn></msup><mo>−</mo><mn>1</mn><mo>+</mo><mn>2</mn><mo>=</mo><mo stretchy="false">(</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn><mo stretchy="false">)</mo><mo>+</mo><mn>2</mn></mrow><annotation encoding="application/x-tex">4n^2-1+2=(2n-1)(2n+1)+2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8974em;vertical-align:-0.0833em;"></span><span class="mord">4</span><span class="mord"><span class="mord mathnormal">n</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">2</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">2</span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">1</span><span class="mclose">)</span><span class="mopen">(</span><span class="mord">2</span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">1</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">2</span></span></span></span>,然后将 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi><mi>x</mi><mo>=</mo><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">dx=2n+1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">d</span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">2</span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span> 带入 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi><mi>y</mi></mrow><annotation encoding="application/x-tex">dy</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">d</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span> 的式子</li>
<li dir="auto">导出了 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi><mo stretchy="false">(</mo><mi>y</mi><mo>−</mo><mn>2</mn><mi>n</mi><mi>x</mi><mo>+</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mn>2</mn></mrow><annotation encoding="application/x-tex">d(y-2nx+x)=2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">d</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">2</span><span class="mord mathnormal">n</span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">2</span></span></span></span>,因此 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">d=1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">d</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span> 或者 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi><mo>=</mo><mn>2</mn></mrow><annotation encoding="application/x-tex">d=2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">d</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">2</span></span></span></span></li>
<li dir="auto">而又因为存在 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi><mi>x</mi><mo>=</mo><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">dx=2n+1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">d</span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">2</span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span>,因此 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi><mi>x</mi></mrow><annotation encoding="application/x-tex">dx</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">d</span><span class="mord mathnormal">x</span></span></span></span> 一定为奇数</li>
<li dir="auto">那么 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">d=1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">d</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span></li>
</ul>
</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> Every real solution of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mi>x</mi><mo>+</mo><mn>3</mn><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">x^3+x+3=0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8974em;vertical-align:-0.0833em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">3</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span> is irrational.</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox" checked=""type="checkbox"> If <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi><mo>></mo><mn>1</mn></mrow><annotation encoding="application/x-tex">p>1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7335em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">p</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span> is an integer and <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mo>∤</mo><mi>p</mi></mrow><annotation encoding="application/x-tex">n\nmid p</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9925em;vertical-align:-0.2514em;"></span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel amsrm">∤</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">p</span></span></span></span> for each integer <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">n</span></span></span></span> for which <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2</mn><mo>≤</mo><mi>n</mi><mo>≤</mo><msqrt><mi>p</mi></msqrt></mrow><annotation encoding="application/x-tex">2\le{n}\le{\sqrt{p}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7804em;vertical-align:-0.136em;"></span><span class="mord">2</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≤</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7719em;vertical-align:-0.136em;"></span><span class="mord"><span class="mord mathnormal">n</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≤</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.04em;vertical-align:-0.3369em;"></span><span class="mord"><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.7031em;"><span class="svg-align" style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord" style="padding-left:0.833em;"><span class="mord mathnormal">p</span></span></span><span style="top:-2.6631em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="min-width:0.853em;height:1.08em;"><svg xmlns="http://www.w3.org/2000/svg" width='400em' height='1.08em' viewBox='0 0 400000 1080' preserveAspectRatio='xMinYMin slice'><path d='M95,702
c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14
c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54
c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10
s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429
c69,-144,104.5,-217.7,106.5,-221
l0 -0
c5.3,-9.3,12,-14,20,-14
H400000v40H845.2724
s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7
c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z
M834 80h400000v40h-400000z'/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.3369em;"><span></span></span></span></span></span></span></span></span></span>, then p is prime.
<ul dir="auto">
<li dir="auto">使用反证法,设 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi><mo>=</mo><mi>m</mi><mi>n</mi></mrow><annotation encoding="application/x-tex">p=mn</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">p</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">mn</span></span></span></span>,为合数</li>
<li dir="auto">因为 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi></mrow><annotation encoding="application/x-tex">m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">m</span></span></span></span> 和 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">n</span></span></span></span> 不可同时大于 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msqrt><mi>p</mi></msqrt></mrow><annotation encoding="application/x-tex">\sqrt{p}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.04em;vertical-align:-0.3369em;"></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.7031em;"><span class="svg-align" style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord" style="padding-left:0.833em;"><span class="mord mathnormal">p</span></span></span><span style="top:-2.6631em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="min-width:0.853em;height:1.08em;"><svg xmlns="http://www.w3.org/2000/svg" width='400em' height='1.08em' viewBox='0 0 400000 1080' preserveAspectRatio='xMinYMin slice'><path d='M95,702
c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14
c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54
c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10
s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429
c69,-144,104.5,-217.7,106.5,-221
l0 -0
c5.3,-9.3,12,-14,20,-14
H400000v40H845.2724
s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7
c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z
M834 80h400000v40h-400000z'/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.3369em;"><span></span></span></span></span></span></span></span></span>,又因为 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi></mrow><annotation encoding="application/x-tex">m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">m</span></span></span></span> 和 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">n</span></span></span></span> 不可同时小于等于 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1</mn></mrow><annotation encoding="application/x-tex">1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span></li>
<li dir="auto">因此存在 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1</mn><mo><</mo><mi>m</mi><mo>≤</mo><msqrt><mi>n</mi></msqrt></mrow><annotation encoding="application/x-tex">1\lt{m}\le{\sqrt{n}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6835em;vertical-align:-0.0391em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"><</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7719em;vertical-align:-0.136em;"></span><span class="mord"><span class="mord mathnormal">m</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≤</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.04em;vertical-align:-0.2397em;"></span><span class="mord"><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8003em;"><span class="svg-align" style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord" style="padding-left:0.833em;"><span class="mord mathnormal">n</span></span></span><span style="top:-2.7603em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="min-width:0.853em;height:1.08em;"><svg xmlns="http://www.w3.org/2000/svg" width='400em' height='1.08em' viewBox='0 0 400000 1080' preserveAspectRatio='xMinYMin slice'><path d='M95,702
c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14
c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54
c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10
s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429
c69,-144,104.5,-217.7,106.5,-221
l0 -0
c5.3,-9.3,12,-14,20,-14
H400000v40H845.2724
s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7
c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z
M834 80h400000v40h-400000z'/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2397em;"><span></span></span></span></span></span></span></span></span></span> 或者 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1</mn><mo><</mo><mi>n</mi><mo>≤</mo><msqrt><mi>p</mi></msqrt></mrow><annotation encoding="application/x-tex">1\lt{n}\le{\sqrt{p}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6835em;vertical-align:-0.0391em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"><</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7719em;vertical-align:-0.136em;"></span><span class="mord"><span class="mord mathnormal">n</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≤</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.04em;vertical-align:-0.3369em;"></span><span class="mord"><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.7031em;"><span class="svg-align" style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord" style="padding-left:0.833em;"><span class="mord mathnormal">p</span></span></span><span style="top:-2.6631em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="min-width:0.853em;height:1.08em;"><svg xmlns="http://www.w3.org/2000/svg" width='400em' height='1.08em' viewBox='0 0 400000 1080' preserveAspectRatio='xMinYMin slice'><path d='M95,702
c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14
c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54
c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10
s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429
c69,-144,104.5,-217.7,106.5,-221
l0 -0
c5.3,-9.3,12,-14,20,-14
H400000v40H845.2724
s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7
c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z
M834 80h400000v40h-400000z'/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.3369em;"><span></span></span></span></span></span></span></span></span></span>,使得 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mo>∤</mo><mi>p</mi></mrow><annotation encoding="application/x-tex">n\nmid p</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9925em;vertical-align:-0.2514em;"></span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel amsrm">∤</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">p</span></span></span></span></li>
<li dir="auto">因此导出矛盾,该结论成立</li>
</ul>
</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox" checked=""type="checkbox"> Divison theorem 的 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>q</mi><mo separator="true">,</mo><mi>r</mi></mrow><annotation encoding="application/x-tex">q,r</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">q</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">r</span></span></span></span> 的唯一性证明
<ul dir="auto">
<li dir="auto">借鉴了这个网站上的推理 <a href="https://mathcenter.oxford.emory.edu/site/math125/proofDivAlgorithm/">Proof of the Divison Algorithm (emory.edu)</a></li>
<li dir="auto">设存在两对不同的 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>q</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>q</mi><mn>2</mn></msub><mo separator="true">,</mo><msub><mi>r</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>r</mi><mn>2</mn></msub></mrow><annotation encoding="application/x-tex">q_{1},q_{2},r_{1},r_{2}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">q</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">q</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span>,有 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>=</mo><mi>b</mi><msub><mi>q</mi><mn>1</mn></msub><mo>+</mo><msub><mi>r</mi><mn>1</mn></msub></mrow><annotation encoding="application/x-tex">a=bq_{1}+r_{1}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">b</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">q</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span>,且有 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>=</mo><mi>b</mi><msub><mi>q</mi><mn>2</mn></msub><mo>+</mo><msub><mi>r</mi><mn>2</mn></msub></mrow><annotation encoding="application/x-tex">a=bq_{2}+r_{2}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">b</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">q</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></li>
<li dir="auto">那么有 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn><mo>=</mo><mi>b</mi><mo stretchy="false">(</mo><msub><mi>q</mi><mn>2</mn></msub><mo>−</mo><msub><mi>q</mi><mn>1</mn></msub><mo stretchy="false">)</mo><mo>+</mo><mo stretchy="false">(</mo><msub><mi>r</mi><mn>2</mn></msub><mo>−</mo><msub><mi>r</mi><mn>1</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">0=b(q_{2}-q_{1})+(r_{2}-r_{1})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">b</span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">q</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">q</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></li>
<li dir="auto">根据 <code>division theorem</code> ,有 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn><mo>≤</mo><msub><mi>r</mi><mn>2</mn></msub><mo>−</mo><msub><mi>r</mi><mn>1</mn></msub><mo><</mo><mi>b</mi></mrow><annotation encoding="application/x-tex">0\le r_{2}-r_{1}\lt{b}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7804em;vertical-align:-0.136em;"></span><span class="mord">0</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≤</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6891em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"><</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord"><span class="mord mathnormal">b</span></span></span></span></span></li>
<li dir="auto">对式子进行移向操作可得:<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>r</mi><mn>1</mn></msub><mo>−</mo><msub><mi>r</mi><mn>2</mn></msub><mo>=</mo><mi>b</mi><mo stretchy="false">(</mo><msub><mi>q</mi><mn>2</mn></msub><mo>−</mo><msub><mi>q</mi><mn>1</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">r_{1}-r_{2}=b(q_{2}-q_{1})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">b</span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">q</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">q</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></li>
<li dir="auto">那么有 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi><mo>∣</mo><msub><mi>r</mi><mn>1</mn></msub><mo>−</mo><msub><mi>r</mi><mn>2</mn></msub></mrow><annotation encoding="application/x-tex">b \mid r_{1}-r_{2}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∣</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></li>
<li dir="auto">只有 0 同时满足 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>−</mo><mi>b</mi><mo><</mo><mrow><msub><mi>r</mi><mn>1</mn></msub><mo>−</mo><msub><mi>r</mi><mn>2</mn></msub></mrow><mo>≤</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">-b\lt{r_{1}-r_{2}}\le{0}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7778em;vertical-align:-0.0833em;"></span><span class="mord">−</span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"><</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.786em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≤</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord"><span class="mord">0</span></span></span></span></span> 和 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi><mo>∣</mo><msub><mi>r</mi><mn>1</mn></msub><mo>−</mo><msub><mi>r</mi><mn>2</mn></msub></mrow><annotation encoding="application/x-tex">b \mid r_{1}-r_{2}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∣</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> 的要求,因此 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>r</mi><mn>1</mn></msub><mo>−</mo><msub><mi>r</mi><mn>2</mn></msub><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">r_{1}-r_{2}=0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span>,由此得到 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>r</mi><mn>1</mn></msub><mo>=</mo><msub><mi>r</mi><mn>2</mn></msub></mrow><annotation encoding="application/x-tex">r_{1}=r_{2}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></li>
<li dir="auto">因为 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>r</mi><mn>1</mn></msub><mo>=</mo><msub><mi>r</mi><mn>2</mn></msub></mrow><annotation encoding="application/x-tex">r_{1}=r_{2}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.5806em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span>,那么 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>q</mi><mn>1</mn></msub><mo>=</mo><msub><mi>q</mi><mn>2</mn></msub></mrow><annotation encoding="application/x-tex">q_{1}=q_{2}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">q</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">q</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span>,唯一性证明完毕</li>
</ul>
</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 前面的 lemma - Suppose <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo>∈</mo><mi>N</mi></mrow><annotation encoding="application/x-tex">a,b\in{N}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">N</span></span></span></span></span>. Thenthere exists a unique <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi><mo>∈</mo><mi>N</mi></mrow><annotation encoding="application/x-tex">d\in N</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7335em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">d</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">N</span></span></span></span> for which: An integer <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi></mrow><annotation encoding="application/x-tex">m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">m</span></span></span></span> is a multiple of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi></mrow><annotation encoding="application/x-tex">d</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">d</span></span></span></span> if and only if <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi><mo>=</mo><mi>a</mi><mi>x</mi><mo>+</mo><mi>b</mi><mi>y</mi></mrow><annotation encoding="application/x-tex">m=ax+by</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">m</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">a</span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">b</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span> for some <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo separator="true">,</mo><mi>y</mi><mo>∈</mo><mi>Z</mi></mrow><annotation encoding="application/x-tex">x,y\in Z</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7335em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">Z</span></span></span></span>. 的推广应用
<ul class="contains-task-list code-line" dir="auto">
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox" checked=""type="checkbox"> Suppose <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo separator="true">,</mo><mi>p</mi><mo>∈</mo><mi>Z</mi></mrow><annotation encoding="application/x-tex">a,b,p\in{Z}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">b</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">p</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">Z</span></span></span></span></span> and <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">p</span></span></span></span> is prime. Prove that if <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi><mo>∣</mo><mi>a</mi><mi>b</mi></mrow><annotation encoding="application/x-tex">p\mid ab</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">p</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∣</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">ab</span></span></span></span> then <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi><mo>∣</mo><mi>a</mi></mrow><annotation encoding="application/x-tex">p\mid a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">p</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∣</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span></span></span></span> or <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi><mo>∣</mo><mi>b</mi></mrow><annotation encoding="application/x-tex">p\mid b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">p</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∣</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">b</span></span></span></span>.
<ul class="contains-task-list code-line" dir="auto">
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> Euclid's lemma</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> Gauss lemma (高斯引理)</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mtext> </mtext><mo>⟹</mo><mtext> </mtext><mrow><mi>Q</mi><mo>∨</mo><mi>R</mi></mrow></mrow><annotation encoding="application/x-tex">P\implies{Q\lor{R}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7073em;vertical-align:-0.024em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⟹</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8778em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal">Q</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∨</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.00773em;">R</span></span></span></span></span></span> 问题的证明</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 反证法证明</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 逆否命题证明法</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 直接证明法</li>
</ul>
</li>
</ul>
</li>
</ul>
</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 集合相关证明
<ul class="contains-task-list code-line" dir="auto">
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 基础集合论学习</li>
<li dir="auto"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>∈</mo></mrow><annotation encoding="application/x-tex">\in</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mrel">∈</span></span></span></span> 关系证明
<ul dir="auto">
<li dir="auto">对于 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>∈</mo><mrow><mo stretchy="false">{</mo><mi>x</mi><mo>:</mo><mi>P</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo stretchy="false">}</mo></mrow></mrow><annotation encoding="application/x-tex">a\in{\{x:P(x)\}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mopen">{</span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)}</span></span></span></span></span> 的证明:看 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">P(a)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mopen">(</span><span class="mord mathnormal">a</span><span class="mclose">)</span></span></span></span> 是否为 <code>True</code></li>
<li dir="auto">对于 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>∈</mo><mrow><mo stretchy="false">{</mo><mi>x</mi><mo>∈</mo><mi>X</mi><mo>:</mo><mi>P</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo stretchy="false">}</mo></mrow></mrow><annotation encoding="application/x-tex">a\in{ \{x\in{X}:P(x)\} }</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mopen">{</span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07847em;">X</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)}</span></span></span></span></span> 的证明:首先判断 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span></span></span></span> 是否属于 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span></span></span></span>,再判断 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">P(a)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mopen">(</span><span class="mord mathnormal">a</span><span class="mclose">)</span></span></span></span> 是否为 <code>True</code></li>
</ul>
</li>
<li dir="auto"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>⊆</mo></mrow><annotation encoding="application/x-tex">\subseteq</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7719em;vertical-align:-0.136em;"></span><span class="mrel">⊆</span></span></span></span> 关系证明
<ul dir="auto">
<li dir="auto">原理:如果 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>∈</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">a\in{A}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal">A</span></span></span></span></span>,而 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi><mo>⊆</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">A\subseteq{B}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8193em;vertical-align:-0.136em;"></span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⊆</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span></span>,那么 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>∈</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">a\in{B}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span></span></li>
<li dir="auto">方法
<ul dir="auto">
<li dir="auto">直接证明:由 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>∈</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">a\in{A}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal">A</span></span></span></span></span> 推出 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>∈</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">a\in{B}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span></span></li>
<li dir="auto">逆否命题推理法:由 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo mathvariant="normal">∉</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">a\notin{B}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"><span class="mord"><span class="mrel">∈</span></span><span class="mord vbox"><span class="thinbox"><span class="llap"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="inner"><span class="mord"><span class="mord">/</span><span class="mspace" style="margin-right:0.0556em;"></span></span></span><span class="fix"></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span></span> 推导出 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo mathvariant="normal">∉</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">a\notin{A}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"><span class="mord"><span class="mrel">∈</span></span><span class="mord vbox"><span class="thinbox"><span class="llap"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="inner"><span class="mord"><span class="mord">/</span><span class="mspace" style="margin-right:0.0556em;"></span></span></span><span class="fix"></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal">A</span></span></span></span></span></li>
<li dir="auto">反证法:设 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>∈</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">a\in{A}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal">A</span></span></span></span></span> 且 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo mathvariant="normal">∉</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">a\notin{B}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"><span class="mord"><span class="mrel">∈</span></span><span class="mord vbox"><span class="thinbox"><span class="llap"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="inner"><span class="mord"><span class="mord">/</span><span class="mspace" style="margin-right:0.0556em;"></span></span></span><span class="fix"></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span></span>,推导出一个矛盾</li>
</ul>
</li>
<li dir="auto">证明格式
<ul dir="auto">
<li dir="auto"><strong>假设</strong> <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>∈</mo><mo stretchy="false">{</mo><mi>x</mi><mo>∈</mo><mi>Z</mi><mo>:</mo><mn>18</mn><mo>∣</mo><mi>x</mi><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">a\in\{x\in{Z}:18\mid x\}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">Z</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">18</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∣</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">x</span><span class="mclose">}</span></span></span></span>,<strong>那么有</strong> <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>∈</mo><mi>Z</mi><mo separator="true">,</mo><mn>18</mn><mo>∣</mo><mi>a</mi></mrow><annotation encoding="application/x-tex">a\in{Z},18\mid a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">Z</span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">18</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∣</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span></span></span></span></li>
<li dir="auto">推理过程 Blablabla</li>
<li dir="auto"><strong>因此</strong> <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span></span></span></span> 可以整除 6,<strong>那么有</strong><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>∈</mo><mo stretchy="false">{</mo><mi>x</mi><mo>∈</mo><mi>Z</mi><mo>:</mo><mn>6</mn><mo>∣</mo><mi>x</mi><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">a\in\{x\in{Z}:6\mid x\}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">Z</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">6</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∣</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">x</span><span class="mclose">}</span></span></span></span></li>
<li dir="auto">我们<strong>由 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>∈</mo><mo stretchy="false">{</mo><mi>x</mi><mo>∈</mo><mi>Z</mi><mo>:</mo><mn>18</mn><mo>∣</mo><mi>x</mi><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">a\in\{x\in{Z}:18\mid x\}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">Z</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">18</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∣</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">x</span><span class="mclose">}</span></span></span></span> 推导出了 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>∈</mo><mo stretchy="false">{</mo><mi>x</mi><mo>∈</mo><mi>Z</mi><mo>:</mo><mn>6</mn><mo>∣</mo><mi>x</mi><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">a\in\{x\in{Z}:6\mid x\}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">Z</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">6</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∣</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">x</span><span class="mclose">}</span></span></span></span></strong></li>
<li dir="auto"><strong>因此有 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">{</mo><mi>x</mi><mo>∈</mo><mi>Z</mi><mo>:</mo><mn>18</mn><mo>∣</mo><mi>x</mi><mo stretchy="false">}</mo><mo>⊆</mo><mo stretchy="false">{</mo><mi>x</mi><mo>∈</mo><mi>Z</mi><mo>:</mo><mn>6</mn><mo>∣</mo><mi>x</mi><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">\{x\in{Z}: 18\mid x\}\subseteq\{x\in{Z}:6\mid x\}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">Z</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">18</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∣</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">x</span><span class="mclose">}</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⊆</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">Z</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">6</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∣</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">x</span><span class="mclose">}</span></span></span></span></strong></li>
</ul>
</li>
<li dir="auto">此外,一些非常浅显易懂的结论我们不会去证明,通常是直接使用。例如:如果 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>X</mi><mo>⊆</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">X\subseteq{A}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8193em;vertical-align:-0.136em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⊆</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal">A</span></span></span></span></span>,那么 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>X</mi><mo>⊆</mo><mrow><mi>A</mi><mo>∪</mo><mi>B</mi></mrow></mrow><annotation encoding="application/x-tex">X\subseteq{A\cup{B}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8193em;vertical-align:-0.136em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⊆</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∪</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span></span></span></li>
</ul>
</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 集合相等关系证明
<ul class="contains-task-list code-line" dir="auto">
<li dir="auto">需要证明 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi><mo>⊆</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">A\subseteq{B}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8193em;vertical-align:-0.136em;"></span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⊆</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span></span> 和 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>B</mi><mo>⊆</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">B\subseteq{A}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8193em;vertical-align:-0.136em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⊆</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal">A</span></span></span></span></span></li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 证明如果 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi></mrow><annotation encoding="application/x-tex">b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">b</span></span></span></span> 和 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi></mrow><annotation encoding="application/x-tex">d</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">d</span></span></span></span> 为质数,<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi><mo>∣</mo><mi>a</mi></mrow><annotation encoding="application/x-tex">b\mid a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∣</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span></span></span></span> 且 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi><mo>∣</mo><mi>a</mi></mrow><annotation encoding="application/x-tex">d\mid a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">d</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∣</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span></span></span></span>,那么 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi><mi>d</mi><mo>∣</mo><mi>a</mi></mrow><annotation encoding="application/x-tex">bd \mid a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">b</span><span class="mord mathnormal">d</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∣</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span></span></span></span>(初等数论)</li>
<li dir="auto">经典例题
<ul class="contains-task-list code-line" dir="auto">
<li dir="auto">==注意==
<ul dir="auto">
<li dir="auto">集合的相关定理证明,需要以元素为基准,而不是像之前那样以定义为基准。也就是说,我们应该在证明时举出相关的例子,然后进行运算。而不是纯粹的根据定义来进行推导。</li>
<li dir="auto">推导 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi><mo>⊆</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">A\subseteq{B}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8193em;vertical-align:-0.136em;"></span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⊆</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span></span> 就是从 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>∈</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">a\in{A}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal">A</span></span></span></span></span> 推导到 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>∈</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">a\in{B}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span></span>,因此我们的推理可以从设 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>∈</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">a\in{A}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal">A</span></span></span></span></span> 开始</li>
</ul>
</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox" checked=""type="checkbox"> 证明如果 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">A</span></span></span></span> 的幂集是 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span> 的幂集的子集,那么 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">A</span></span></span></span> 是 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span> 的子集
<ul dir="auto">
<li dir="auto">我们要证明 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">A</span></span></span></span> 的子集是 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span> 的子集,也就是对于任意的 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>∈</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">x\in{A}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal">A</span></span></span></span></span>,都有 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>∈</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">x\in{B}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span></span></li>
<li dir="auto">那么我们设 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>∈</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">a\in{A}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal">A</span></span></span></span></span>,那么有 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">{</mo><mi>a</mi><mo stretchy="false">}</mo><mo>⊆</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">\{a\}\subseteq{A}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord mathnormal">a</span><span class="mclose">}</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⊆</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal">A</span></span></span></span></span></li>
<li dir="auto">因为 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">{</mo><mi>a</mi><mo stretchy="false">}</mo><mo>⊆</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">\{a\}\subseteq{A}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord mathnormal">a</span><span class="mclose">}</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⊆</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal">A</span></span></span></span></span>,因此有 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">{</mo><mi>a</mi><mo stretchy="false">}</mo><mo>∈</mo><mrow><mi mathvariant="script">P</mi><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo></mrow></mrow><annotation encoding="application/x-tex">\{a\}\in{\mathcal{P}(A)}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord mathnormal">a</span><span class="mclose">}</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathcal" style="margin-right:0.08222em;">P</span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span></span></span></span></span></li>
<li dir="auto">因为 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="script">P</mi><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo><mo>⊆</mo><mi mathvariant="script">P</mi><mo stretchy="false">(</mo><mi>B</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathcal{P}(A)\subseteq\mathcal{P}(B)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathcal" style="margin-right:0.08222em;">P</span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⊆</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathcal" style="margin-right:0.08222em;">P</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mclose">)</span></span></span></span>,因此对于 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">∀</mi><mi>X</mi><mo>∈</mo><mi mathvariant="script">P</mi><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\forall X\in\mathcal{P}(A)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7335em;vertical-align:-0.0391em;"></span><span class="mord">∀</span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathcal" style="margin-right:0.08222em;">P</span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span></span></span></span>,有 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>X</mi><mo>∈</mo><mi mathvariant="script">P</mi><mo stretchy="false">(</mo><mi>B</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">X\in\mathcal{P}(B)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7224em;vertical-align:-0.0391em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathcal" style="margin-right:0.08222em;">P</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mclose">)</span></span></span></span></li>
<li dir="auto">因为 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">{</mo><mi>a</mi><mo stretchy="false">}</mo><mo>∈</mo><mi mathvariant="script">P</mi><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\{a\}\in\mathcal{P}(A)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord mathnormal">a</span><span class="mclose">}</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathcal" style="margin-right:0.08222em;">P</span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mclose">)</span></span></span></span>,因此有 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">{</mo><mi>a</mi><mo stretchy="false">}</mo><mo>∈</mo><mi mathvariant="script">P</mi><mo stretchy="false">(</mo><mi>B</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\{a\}\in\mathcal{P}(B)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord mathnormal">a</span><span class="mclose">}</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathcal" style="margin-right:0.08222em;">P</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mclose">)</span></span></span></span></li>
<li dir="auto">那么有 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">{</mo><mi>a</mi><mo stretchy="false">}</mo><mo>⊆</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">\{a\}\subseteq{B}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord mathnormal">a</span><span class="mclose">}</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⊆</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span></span></li>
<li dir="auto">因此有 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>∈</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">a\in{B}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span></span></li>
<li dir="auto">现在我们由 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>∈</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">a\in{A}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal">A</span></span></span></span></span> 推导出了 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>∈</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">a\in{B}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span></span>,因此 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi><mo>⊆</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">A\subseteq{B}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8193em;vertical-align:-0.136em;"></span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⊆</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span></span></li>
</ul>
</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox" checked=""type="checkbox"> 证明当 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>C</mi><mo mathvariant="normal">≠</mo><mi mathvariant="normal">∅</mi></mrow><annotation encoding="application/x-tex">C\ne\emptyset</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"><span class="mrel"><span class="mord vbox"><span class="thinbox"><span class="rlap"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="inner"><span class="mord"><span class="mrel"></span></span></span><span class="fix"></span></span></span></span></span><span class="mrel">=</span></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8056em;vertical-align:-0.0556em;"></span><span class="mord">∅</span></span></span></span>,如果 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi><mo>×</mo><mi>C</mi><mo>=</mo><mi>B</mi><mo>×</mo><mi>C</mi></mrow><annotation encoding="application/x-tex">A\times{C}=B\times{C}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span></span></span></span></span>,那么 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi><mo>=</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">A=B</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span>
<ul class="contains-task-list code-line" dir="auto">
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> 笛卡尔积的定义复习</li>
<li dir="auto">首先我们证明 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi><mo>⊆</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">A\subseteq{B}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8193em;vertical-align:-0.136em;"></span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⊆</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span></span>
<ul dir="auto">
<li dir="auto">设 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>∈</mo><mi>A</mi><mo separator="true">,</mo><mi>c</mi><mo>∈</mo><mi>C</mi></mrow><annotation encoding="application/x-tex">a\in{A},c\in{C}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8778em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal">A</span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">c</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span></span></span></span></span>,那么 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mi>a</mi><mo separator="true">,</mo><mi>c</mi><mo stretchy="false">)</mo><mo>∈</mo><mi>A</mi><mo>×</mo><mi>C</mi></mrow><annotation encoding="application/x-tex">(a,c)\in A\times{C}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">c</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span></span></span></span></span></li>
<li dir="auto">因为 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi><mo>×</mo><mi>C</mi><mo>=</mo><mi>B</mi><mo>×</mo><mi>C</mi></mrow><annotation encoding="application/x-tex">A\times{C}=B\times{C}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span></span></span></span></span>,那么 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mi>a</mi><mo separator="true">,</mo><mi>c</mi><mo stretchy="false">)</mo><mo>∈</mo><mrow><mi>B</mi><mo>×</mo><mi>C</mi></mrow></mrow><annotation encoding="application/x-tex">(a,c)\in{B\times C}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">c</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7667em;vertical-align:-0.0833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span></span></span></span></span></li>
<li dir="auto">根据笛卡尔积的定义我们知道,<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>∈</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">a\in{B}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span></span></li>
<li dir="auto">由 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>∈</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">a\in{A}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal">A</span></span></span></span></span> 推导得到了 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>∈</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">a\in{B}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span></span>,因此可得 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi><mo>⊆</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">A\subseteq{B}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8193em;vertical-align:-0.136em;"></span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⊆</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span></span></li>
</ul>
</li>
<li dir="auto">下面我们证明 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>B</mi><mo>⊆</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">B\subseteq{A}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8193em;vertical-align:-0.136em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⊆</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal">A</span></span></span></span></span>
<ul dir="auto">
<li dir="auto">设 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi><mo>∈</mo><mi>B</mi><mo separator="true">,</mo><mi>c</mi><mo>∈</mo><mi>C</mi></mrow><annotation encoding="application/x-tex">b\in{B},c\in{C}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7335em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8778em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">c</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span></span></span></span></span>,那么 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mi>b</mi><mo separator="true">,</mo><mi>c</mi><mo stretchy="false">)</mo><mo>∈</mo><mi>B</mi><mo>×</mo><mi>C</mi></mrow><annotation encoding="application/x-tex">(b,c)\in B\times{C}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">b</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">c</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span></span></span></span></span></li>
<li dir="auto">因为 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>B</mi><mo>×</mo><mi>C</mi><mo>=</mo><mi>A</mi><mo>×</mo><mi>C</mi></mrow><annotation encoding="application/x-tex">B\times{C}=A\times{C}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span></span></span></span></span>,因此 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mi>b</mi><mo separator="true">,</mo><mi>c</mi><mo stretchy="false">)</mo><mo>∈</mo><mrow><mi>A</mi><mo>×</mo><mi>C</mi></mrow></mrow><annotation encoding="application/x-tex">(b,c)\in{A\times{C}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">b</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">c</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7667em;vertical-align:-0.0833em;"></span><span class="mord"><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span></span></span></span></span></span></li>
<li dir="auto">根据笛卡尔积的定义我们知道,<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi><mo>∈</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">b\in{A}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7335em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal">A</span></span></span></span></span></li>
<li dir="auto">由 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi><mo>∈</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">b\in{B}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7335em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span></span> 推导得到了 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi><mo>∈</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">b\in{A}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7335em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal">A</span></span></span></span></span>,因此可得 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>B</mi><mo>⊆</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">B\subseteq{A}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8193em;vertical-align:-0.136em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⊆</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal">A</span></span></span></span></span></li>
</ul>
</li>
<li dir="auto">因为 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi><mo>⊆</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">A\subseteq{B}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8193em;vertical-align:-0.136em;"></span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⊆</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span></span> 且 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>B</mi><mo>⊆</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">B\subseteq{A}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8193em;vertical-align:-0.136em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⊆</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal">A</span></span></span></span></span>,因此有 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi><mo>=</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">A=B</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span></li>
</ul>
</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox" checked=""type="checkbox"> 证明 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi><mo>×</mo><mo stretchy="false">(</mo><mrow><mi>B</mi><mo>∩</mo><mi>C</mi></mrow><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><mi>A</mi><mo>×</mo><mi>B</mi><mo stretchy="false">)</mo><mo>∩</mo><mo stretchy="false">(</mo><mi>A</mi><mo>×</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">A\times({B\cap{C}})=(A\times{B})\cap(A\times{C})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∩</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∩</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span></span><span class="mclose">)</span></span></span></span>
<ul class="contains-task-list code-line" dir="auto">
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox" checked=""type="checkbox"> 用示例证明
<ul dir="auto">
<li dir="auto">证明 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi><mo>×</mo><mo stretchy="false">(</mo><mrow><mi>B</mi><mo>∩</mo><mi>C</mi></mrow><mo stretchy="false">)</mo><mo>⊆</mo><mo stretchy="false">(</mo><mi>A</mi><mo>×</mo><mi>B</mi><mo stretchy="false">)</mo><mo>∩</mo><mo stretchy="false">(</mo><mi>A</mi><mo>×</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">A\times({B\cap{C}})\subseteq(A\times{B})\cap(A\times{C})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∩</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⊆</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∩</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span></span><span class="mclose">)</span></span></span></span>
<ul dir="auto">
<li dir="auto">设<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo stretchy="false">)</mo><mo>∈</mo><mi>A</mi><mo>×</mo><mo stretchy="false">(</mo><mrow><mi>B</mi><mo>∩</mo><mi>C</mi></mrow><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(a,b)\in A\times({B\cap{C}})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">b</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∩</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span></span></span><span class="mclose">)</span></span></span></span></li>
<li dir="auto">那么 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>∈</mo><mi>A</mi><mo separator="true">,</mo><mi>b</mi><mo>∈</mo><mrow><mi>B</mi><mo>∩</mo><mi>C</mi></mrow></mrow><annotation encoding="application/x-tex">a\in{A},b\in{B\cap{C}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal">A</span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∩</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span></span></span></span></span></span></li>
<li dir="auto">因为 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi><mo>∈</mo><mi>B</mi><mo>∩</mo><mi>C</mi></mrow><annotation encoding="application/x-tex">b\in B\cap{C}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7335em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∩</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span></span></span></span></span>,因此 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi><mo>∈</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">b\in{B}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7335em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span></span> 且 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi><mo>∈</mo><mi>C</mi></mrow><annotation encoding="application/x-tex">b\in{C}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7335em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span></span></span></span></span></li>
<li dir="auto">那么 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo stretchy="false">)</mo><mo>∈</mo><mrow><mi>A</mi><mo>×</mo><mi>B</mi></mrow></mrow><annotation encoding="application/x-tex">(a,b)\in{A\times{B}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">b</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7667em;vertical-align:-0.0833em;"></span><span class="mord"><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span></span></span> 且 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo stretchy="false">)</mo><mo>∈</mo><mi>A</mi><mo>×</mo><mi>C</mi></mrow><annotation encoding="application/x-tex">(a,b)\in A\times{C}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">b</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span></span></span></span></span></li>
<li dir="auto">因此 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo stretchy="false">)</mo><mo>∈</mo><mrow><mo stretchy="false">(</mo><mi>A</mi><mo>×</mo><mi>B</mi><mo stretchy="false">)</mo><mo>∩</mo><mo stretchy="false">(</mo><mi>A</mi><mo>×</mo><mi>C</mi><mo stretchy="false">)</mo></mrow></mrow><annotation encoding="application/x-tex">(a,b)\in{(A\times{B})\cap(A\times{C})}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">b</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∩</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span></span><span class="mclose">)</span></span></span></span></span></li>
<li dir="auto">因此我们从 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>∈</mo><mi>A</mi><mo>×</mo><mo stretchy="false">(</mo><mrow><mi>B</mi><mo>∩</mo><mi>C</mi></mrow><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">a\in A\times({B\cap{C}})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∩</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span></span></span><span class="mclose">)</span></span></span></span> 推导得到了 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>∈</mo><mo stretchy="false">(</mo><mi>A</mi><mo>×</mo><mi>B</mi><mo stretchy="false">)</mo><mo>∩</mo><mo stretchy="false">(</mo><mi>A</mi><mo>×</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">a\in (A\times{B})\cap(A\times{C})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∩</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span></span><span class="mclose">)</span></span></span></span></li>
<li dir="auto">因此 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi><mo>×</mo><mo stretchy="false">(</mo><mrow><mi>B</mi><mo>∩</mo><mi>C</mi></mrow><mo stretchy="false">)</mo><mo>⊆</mo><mo stretchy="false">(</mo><mi>A</mi><mo>×</mo><mi>B</mi><mo stretchy="false">)</mo><mo>∩</mo><mo stretchy="false">(</mo><mi>A</mi><mo>×</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">A\times({B\cap{C}}) \subseteq (A\times{B})\cap(A\times{C})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∩</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⊆</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∩</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span></span><span class="mclose">)</span></span></span></span></li>
</ul>
</li>
<li dir="auto">证明 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mi>A</mi><mo>×</mo><mi>B</mi><mo stretchy="false">)</mo><mo>∩</mo><mo stretchy="false">(</mo><mi>A</mi><mo>×</mo><mi>C</mi><mo stretchy="false">)</mo><mo>⊆</mo><mi>A</mi><mo>×</mo><mo stretchy="false">(</mo><mrow><mi>B</mi><mo>∩</mo><mi>C</mi></mrow><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(A\times{B})\cap(A\times{C})\subseteq A\times({B\cap{C}})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∩</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⊆</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∩</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span></span></span><span class="mclose">)</span></span></span></span>
<ul dir="auto">
<li dir="auto">设 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo stretchy="false">)</mo><mo>∈</mo><mo stretchy="false">(</mo><mi>A</mi><mo>×</mo><mi>B</mi><mo stretchy="false">)</mo><mo>∩</mo><mo stretchy="false">(</mo><mi>A</mi><mo>×</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(a,b)\in (A\times{B})\cap(A\times{C})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">b</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∩</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span></span><span class="mclose">)</span></span></span></span></li>
<li dir="auto">因此 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo stretchy="false">)</mo><mo>∈</mo><mi>A</mi><mo>×</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">(a,b)\in A\times{B}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">b</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span></span> 且 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo stretchy="false">)</mo><mo>∈</mo><mi>A</mi><mo>×</mo><mi>C</mi></mrow><annotation encoding="application/x-tex">(a,b)\in A\times{C}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">b</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span></span></span></span></span></li>
<li dir="auto">根据笛卡尔积的定义,<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi><mo>∈</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">b\in B</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7335em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span> 且 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi><mo>∈</mo><mi>C</mi></mrow><annotation encoding="application/x-tex">b\in C</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7335em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span></span></span></span>,即 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi><mo>∈</mo><mi>B</mi><mo>∩</mo><mi>C</mi></mrow><annotation encoding="application/x-tex">b\in B\cap C</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7335em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∩</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">C</span></span></span></span></li>
<li dir="auto">因此有 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo stretchy="false">)</mo><mo>∈</mo><mi>A</mi><mo>×</mo><mo stretchy="false">(</mo><mi>B</mi><mo>×</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(a,b)\in A\times(B\times{C})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">b</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span></span><span class="mclose">)</span></span></span></span></li>
<li dir="auto">我们由 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo stretchy="false">)</mo><mo>∈</mo><mo stretchy="false">(</mo><mi>A</mi><mo>×</mo><mi>B</mi><mo stretchy="false">)</mo><mo>∩</mo><mo stretchy="false">(</mo><mi>A</mi><mo>×</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(a, b)\in (A\times{B})\cap (A\times{C})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">b</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∩</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span></span><span class="mclose">)</span></span></span></span> 推导得到了 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo stretchy="false">)</mo><mo>∈</mo><mi>A</mi><mo>×</mo><mo stretchy="false">(</mo><mi>B</mi><mo>×</mo><mi>C</mi></mrow><annotation encoding="application/x-tex">(a,b)\in A\times(B\times{C}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">b</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span></span></span></span></span></li>
<li dir="auto">因此 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mi>A</mi><mo>×</mo><mi>B</mi><mo stretchy="false">)</mo><mo>∩</mo><mo stretchy="false">(</mo><mi>A</mi><mo>×</mo><mi>C</mi><mo stretchy="false">)</mo><mo>⊆</mo><mi>A</mi><mo>×</mo><mo stretchy="false">(</mo><mrow><mi>B</mi><mo>∩</mo><mi>C</mi></mrow><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(A\times{B})\cap(A\times{C})\subseteq A\times({B\cap{C}})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∩</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⊆</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∩</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span></span></span><span class="mclose">)</span></span></span></span></li>
</ul>
</li>
</ul>
</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox" checked=""type="checkbox"> 用集合运算律证明
<ul dir="auto">
<li dir="auto">==注意==:<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mtext> </mtext><mo>⟺</mo><mtext> </mtext><mi>P</mi><mo>∧</mo><mi>P</mi></mrow><annotation encoding="application/x-tex">P\iff P\land P</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7073em;vertical-align:-0.024em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⟺</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∧</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span></span></span></span>,因此有 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>∈</mo><mi>A</mi><mtext> </mtext><mo>⟺</mo><mtext> </mtext><mi>x</mi><mo>∈</mo><mi>A</mi><mo>∧</mo><mi>x</mi><mo>∈</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">x\in A\iff x\in A\land x\in A</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7073em;vertical-align:-0.024em;"></span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">⟺</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">A</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∧</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">A</span></span></span></span></li>
<li dir="auto">在课本 p 164,核心方法如上,将 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>∈</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">x\in A</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">A</span></span></span></span> 拆成 2 个 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>∈</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">x\in A</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal">A</span></span></span></span> 的交集,然后分割成 2 个交集。最后可以发现这两个集合分别来自两个笛卡尔积。</li>
</ul>
</li>
<li dir="auto">注意区分集合的交并分配律,和 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>∧</mo></mrow><annotation encoding="application/x-tex">\land</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5556em;"></span><span class="mord">∧</span></span></span></span> 以及 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>∨</mo></mrow><annotation encoding="application/x-tex">\lor</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5556em;"></span><span class="mord">∨</span></span></span></span> 的交并分配律。前者可以转化成后者。此外,<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>∈</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">x\in{A}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal">A</span></span></span></span></span> 可以转化为 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>∈</mo><mi>A</mi><mo>∧</mo><mi>x</mi><mo>∈</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">x\in{A}\land x\in{A}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal">A</span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∧</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal">A</span></span></span></span></span> 或者 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>∈</mo><mi>A</mi><mo>∨</mo><mi>x</mi><mo>∈</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">x\in{A}\lor x\in{A}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal">A</span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∨</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal">A</span></span></span></span></span> 然后进行分配律的运算。集合交并问题的公理证明不需要从左推到右和从右推到左。</li>
<li dir="auto">在证明 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>∈</mo><mover accent="true"><mi>A</mi><mo>ˉ</mo></mover></mrow><annotation encoding="application/x-tex">x\in{\bar A}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8201em;"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8201em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">A</span></span><span style="top:-3.2523em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.1111em;"><span class="mord">ˉ</span></span></span></span></span></span></span></span></span></span></span> 时,需要使用 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>∈</mo><mrow><mi>U</mi><mo>−</mo><mi>A</mi></mrow></mrow><annotation encoding="application/x-tex">x\in{U-A}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7667em;vertical-align:-0.0833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">U</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord mathnormal">A</span></span></span></span></span>,然后 <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>∈</mo><mi>U</mi><mo>∧</mo><mi>x</mi><mo mathvariant="normal">∉</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">x\in{U}\land x\notin{A}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">U</span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">∧</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"><span class="mord"><span class="mrel">∈</span></span><span class="mord vbox"><span class="thinbox"><span class="llap"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="inner"><span class="mord"><span class="mord">/</span><span class="mspace" style="margin-right:0.0556em;"></span></span></span><span class="fix"></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord"><span class="mord mathnormal">A</span></span></span></span></span></li>
<li dir="auto">要善用德摩根律,符号不要搞错了</li>
<li dir="auto">要证明有一个方向推不出来,且直接推/逆否推/反证法不好使的情况,举反例即可</li>
<li dir="auto">对于多个并连接起来的笛卡尔积,注意证明时分类讨论</li>
<li class="task-list-item enabled code-line" dir="auto"><input class="task-list-item-checkbox"type="checkbox"> <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><munder><mo>⋂</mo><mrow><mi>a</mi><mo>∈</mo><mi>R</mi></mrow></munder><msub><mi>A</mi><mi>α</mi></msub></mrow><annotation encoding="application/x-tex">\bigcap\limits_{a\in{R}}A_{\alpha}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.7717em;vertical-align:-1.0217em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.75em;"><span style="top:-2.1057em;margin-left:0em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">a</span><span class="mrel mtight">∈</span><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.00773em;">R</span></span></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span><span class="mop op-symbol small-op">⋂</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.0217em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.0037em;">α</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> 这种在一个范围内的交集</li>