-
Notifications
You must be signed in to change notification settings - Fork 14
/
AI.py
593 lines (486 loc) · 23.6 KB
/
AI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
'''
Created on Dec 3, 2016
@author: Sam Ragusa
'''
import random
import json
from ast import literal_eval
from Board import Board
import matplotlib.pyplot as plt
class Player:
"""
A class to be inherited by any class representing a checkers player.
This is used so that other functions can be written for more general use,
without worry of crashing (e.g. play_n_games).
NOTES:
1) Create set playerID method
"""
def set_board(self, the_board):
"""
Sets the Board object which is known by the AI.
"""
self.board = the_board
def game_completed(self):
"""
Should be overridden if AI implementing this class should be notified
of when a game ends, before the board is wiped.
"""
pass
def get_next_move(self):
"""
Gets the desired next move from the AI.
"""
pass
def reward_function(state_info1, state_info2):
"""
Reward for transitioning from state with state_info1 to state with state_info2.
NOTE:
1) do something better with where/how this is implemented
2) should give some kind of negative for tieing
"""
if state_info2[1] == 0 and state_info2[3] == 0:
return 12
if state_info2[0] == 0 and state_info2[2] == 0:
return -12
return state_info2[0]-state_info1[0] + 2*(state_info2[2]-state_info1[2])-(state_info2[1]-state_info1[1])-2*(state_info2[3]-state_info1[3])
class Q_Learning_AI(Player):
"""
TO-DO:
1) add ability to not train when wanted in a more efficient way
A) when not training also don't look for/add currently unknown states
B) do this by having an instance variable saying if it's testing or training
C) and let a function set that parameter
2) handle the rewards function which is coded as if the function were already defined
"""
def __init__(self, the_player_id, the_learning_rate, the_discount_factor, info_location=None, the_random_move_probability=0, the_board=None):
"""
Initialize the instance variables to be stored by the AI.
"""
self.random_move_probability = the_random_move_probability
self.learning_rate = the_learning_rate
self.discount_factor = the_discount_factor
self.player_id = the_player_id
self.board = the_board
self.pre_last_move_state = None
self.post_last_move_state = None
if not info_location is None:
self.load_transition_information(info_location)
else:
self.transitions = {}
def set_random_move_probability(self, probability):
"""
Sets the random move probability for the AI.
"""
self.random_move_probability = probability
def set_learning_rate(self, the_learning_rate):
"""
Sets the learning rate for the AI.
"""
self.learning_rate = the_learning_rate
def get_states_from_boards_spots(self, boards_spots):
"""
Gets an array of tuples from the given set of board spots,
each tuple representing the characteristics which define the
state the board is in.
Format of returned data:
[(own_pieces, opp_pieces, own_kings, opp_kings, own_edges, own_vert_center_mass, opp_vert_center_mass), ...]
"""
piece_counters = [[0,0,0,0,0,0,0] for j in range(len(boards_spots))]
for k in range(len(boards_spots)):
for j in range(len(boards_spots[k])):
for i in range(len(boards_spots[k][j])):
if boards_spots[k][j][i] != 0:
piece_counters[k][boards_spots[k][j][i]-1] = piece_counters[k][boards_spots[k][j][i]-1] + 1
if (self.player_id and (boards_spots[k][j][i] == 1 or boards_spots[k][j][i] == 3)) or (not self.player_id and (boards_spots[k][j][i] == 2 or boards_spots[k][j][i] == 4)):
if i==0 and j%2==0:
piece_counters[k][4] = piece_counters[k][4] + 1
elif i==3 and j%2==1:
piece_counters[k][4] = piece_counters[k][4] + 1
piece_counters[k][5] = piece_counters[k][5] + j
else:
piece_counters[k][6] = piece_counters[k][6] + j
if piece_counters[k][0] + piece_counters[k][2] != 0:
piece_counters[k][5] = int(piece_counters[k][5] / (piece_counters[k][0] + piece_counters[k][2]))
else:
piece_counters[k][5] = 0
if piece_counters[k][1] + piece_counters[k][3] != 0:
piece_counters[k][6] = int(piece_counters[k][6] / (piece_counters[k][1] + piece_counters[k][3]))
else:
piece_counters[k][6] = 0
return [tuple(counter) for counter in piece_counters]
def get_desired_transition_between_states(self, possible_state_array, initial_transition_value=10):#%%%%%%%%%%%%%%%%%% FOR (1)
"""
Gets the desired transition to taken for the current board configuration.
If any possible transition does not exist, it will create it.
"""
cur_state = tuple(self.get_states_from_boards_spots([self.board.spots])[0])
done_transitions = {}
for state in possible_state_array:#%%%%%%%%%%%%%%%%%%%%%% FOR (1)
if done_transitions.get((cur_state, tuple(state))) is None:
if self.transitions.get((cur_state, tuple(state))) is None:
self.transitions.update({(cur_state, tuple(state)):initial_transition_value})
done_transitions.update({(cur_state, tuple(state)):self.transitions.get((cur_state, tuple(state)))})
if random != 0 and random.random() < self.random_move_probability:
try:
return list(done_transitions.keys())[random.randint(0, len(done_transitions)-1)]
except:
return []
try:
reverse_dict = {j:i for i,j in done_transitions.items()}
return reverse_dict.get(max(reverse_dict))
except:
return []
def game_completed(self):
"""
Update self.transitions with a completed game before the board
is cleared.
"""
cur_state = self.get_states_from_boards_spots([self.board.spots])[0]
transition = (self.pre_last_move_state ,self.post_last_move_state)
self.transitions[transition] = self.transitions[transition] + self.learning_rate * reward_function(transition[0],cur_state)
self.pre_last_move_state = None
self.post_last_move_state = None
def get_transitions_information(self):
"""
Get an array of of information about the dictionary self.transitions .
It returns the information in the form:
[num_transitions, num_start_of_transitions, avg_value, max_value, min_value]
NOTES:
1) Should use a dictionary here so this runs much faster
"""
start_of_transitions = {}
max_value = float("-inf")
min_value = float("inf")
total_value = 0
for k,v in self.transitions.items():
if start_of_transitions.get(k[0]) is None:
start_of_transitions.update({k[0]:0})
#if k[0] not in start_of_transitions:
#start_of_transitions.append(k[0])
if v > max_value:
max_value = v
if v < min_value:
min_value = v
total_value = total_value + v
return [len(self.transitions), len(start_of_transitions), float(total_value/len(self.transitions)), max_value, min_value]
def print_transition_information(self, info):
"""
Prints the output of get_transitions_information in a easy to understand format.
"""
print("Total number of transitions: ".ljust(35), info[0])
print("Total number of visited states: ".ljust(35), info[1])
print("Average value for transition: ".ljust(35), info[2])
print("Maximum value for transition: ".ljust(35), info[3])
print("Minimum value for transition: ".ljust(35), info[4])
def save_transition_information(self, file_name="data.json"):
"""
Saves the current transitions information to a specified
json file.
"""
with open(file_name, 'w') as fp:
json.dump({str(k): v for k,v in self.transitions.items()}, fp)
def load_transition_information(self, file_name):
"""
Loads transitions information from a desired json file.
"""
with open(file_name, 'r') as fp:
self.transitions = {literal_eval(k): v for k,v in json.load(fp).items()}
def get_optimal_potential_value(self, depth):
"""
Look ahead a given number of moves and return the maximal value associated
with a move of that depth.
STRATEGY:
1) Look forward in (actual) own transition states.
2) Look at board as self being the opponent and look forward in that situations transition states
3) If not at depth go back to step (1)
TODO:
1) Approach this with algorithm similar to how minimax works
a) look for set of transitions from (I think) current state of length depth by doing minimax
b) Might also use alpha-beta pruning
NOTES:
1) depth is not actually looking ahead in possible moves, but actually simulating something similar (hopefully similar)
2) ONLY WORKS FOR DEPTH OF 1 RIGHT NOW
"""
answer = float("-inf")
cur_state = self.get_states_from_boards_spots([self.board.spots])[0]
for k,v in self.transitions.items():
if v > answer and k[0] == cur_state:
answer = v
if answer == float("-inf"):
return None
return answer
def get_next_move(self):#, new_board):
"""
NOTES:
If the variable names are confusing, think about them being named when you just call the method.
PRECONDITIONS:
1) The board exists and is legal
"""
if self.pre_last_move_state is not None:#%%%%%%%%%%%%%%%%%%%%%%% FOR (1)
cur_state = self.get_states_from_boards_spots([self.board.spots])[0]
transition = (self.pre_last_move_state ,self.post_last_move_state)
try:# self.transitions.get(transition) is not None:#%%%%%%%%%%%%%%%%%%%%%%%%%%%% FOR (1)
max_future_state = self.get_optimal_potential_value(1)
self.transitions[transition] = self.transitions[transition] + self.learning_rate * (reward_function(transition[0],cur_state)+ self.discount_factor* max_future_state - self.transitions[transition])
except:#%%%%%%%%%%%%%%%%%%%%%%%%%%%% FOR (1)
self.transitions[transition] = self.transitions[transition] + self.learning_rate * (reward_function(transition[0],cur_state))
self.pre_last_move_state = self.get_states_from_boards_spots([self.board.spots])[0]#%%%%%%%%%%%%%%%%%%%%%%%%%%%% FOR (1)
possible_next_moves = self.board.get_possible_next_moves()
possible_next_states = self.get_states_from_boards_spots(self.board.get_potential_spots_from_moves(possible_next_moves))
self.post_last_move_state = self.get_desired_transition_between_states(possible_next_states)[1]
considered_moves = []
for j in range(len(possible_next_states)):
if tuple(possible_next_states[j]) == self.post_last_move_state:
considered_moves.append(possible_next_moves[j])
#I believe with the updated board.is_game_over() I don't need to use this try statement
# try:
# return considered_moves[random.randint(0,len(considered_moves)-1)]
# except ValueError:
# return []
return considered_moves[random.randint(0,len(considered_moves)-1)]
def get_number_of_pieces_and_kings(spots, player_id=None):
"""
Gets the number of pieces and the number of kings that each player has on the current
board configuration represented in the given spots. The format of the function with defaults is:
[P1_pieces, P2_pieces, P1_kings, P2_kings]
and if given a player_id:
[player_pieces, player_kings]
"""
piece_counter = [0,0,0,0]
for row in spots:
for element in row:
if element != 0:
piece_counter[element-1] = piece_counter[element-1] + 1
if player_id == True:
return [piece_counter[0], piece_counter[2]]
elif player_id == False:
return [piece_counter[1], piece_counter[3]]
else:
return piece_counter
class Alpha_beta(Player):
"""
A class representing a checkers playing AI using Alpha-Beta pruning.
TO DO:
1) Be able to take in any reward function (for when not win/loss)
so that you can make a more robust set of training AI
"""
def __init__(self, the_player_id, the_depth, the_board=None):
"""
Initialize the instance variables to be stored by the AI.
"""
self.board = the_board
self.depth = the_depth
self.player_id = the_player_id
def alpha_beta(self, board, depth, alpha, beta, maximizing_player):
"""
A method implementing alpha-beta pruning to decide what move to make given
the current board configuration.
"""
if board.is_game_over():
if get_number_of_pieces_and_kings(board.spots, board.player_turn) == [0,0]:
if maximizing_player:
#Using integers instead of float("inf") so it's less than float("inf") not equal to
return -10000000, None
else:
return 10000000, None
elif get_number_of_pieces_and_kings(board.spots, not board.player_turn) == [0,0]:
if maximizing_player:
return 1000000, None
else:
return -1000000, None
else:
return 0, None
if depth == 0:
players_info = get_number_of_pieces_and_kings(board.spots)
if board.player_turn != maximizing_player:
return players_info[1] + 2 * players_info[3] - (players_info[0] + 2 * players_info[2]), None
return players_info[0] + 2 * players_info[2] - (players_info[1] + 2 * players_info[3]), None
possible_moves = board.get_possible_next_moves()
potential_spots = board.get_potential_spots_from_moves(possible_moves)
desired_move_index = None
if maximizing_player:
v = float('-inf')
for j in range(len(potential_spots)):
cur_board = Board(potential_spots[j], not board.player_turn)
alpha_beta_results = self.alpha_beta(cur_board, depth - 1, alpha, beta, False)
if v < alpha_beta_results[0]:
v = alpha_beta_results[0]
alpha = max(alpha, v)
desired_move_index = j
if beta <= alpha:
break
if desired_move_index is None:
return v, None
return v, possible_moves[desired_move_index]
else:
v = float('inf')
for j in range(len(potential_spots)):
cur_board = Board(potential_spots[j], not board.player_turn)
alpha_beta_results = self.alpha_beta(cur_board, depth - 1, alpha, beta, True)
if v > alpha_beta_results[0]:
v = alpha_beta_results[0]
desired_move_index = j
beta = min(beta, v)
if beta <= alpha:
break
if desired_move_index is None:
return v, None
return v, possible_moves[desired_move_index]
def get_next_move(self):
return self.alpha_beta(self.board, self.depth, float('-inf'), float('inf'), self.player_id)[1]
def play_n_games(player1, player2, num_games, move_limit):
"""
Plays a specified amount of games of checkers between player1, who goes first,
and player2, who goes second. The games will be stopped after the given limit on moves.
This function outputs an array of arrays formatted as followed (only showing game 1's info):
[[game1_outcome, num_moves, num_own_pieces, num_opp_pieces, num_own_kings, num_opp_kings]...]
gameN_outcome is 0 if player1 won, 1 if lost, 2 if tied, and 3 if hit move limit.
PRECONDITIONS:
1)Both player1 and player2 inherit the Player class
2)Both player1 and player2 play legal moves only
"""
game_board = Board()
player1.set_board(game_board)
player2.set_board(game_board)
players_move = player1
outcome_counter = [[-1,-1,-1,-1,-1,-1] for j in range(num_games)]
for j in range(num_games):
#print(j)
move_counter = 0
while not game_board.is_game_over() and move_counter < move_limit:
game_board.make_move(players_move.get_next_move())
move_counter = move_counter + 1
if players_move is player1:
players_move = player2
else:
players_move = player1
else:
piece_counter = get_number_of_pieces_and_kings(game_board.spots)
if piece_counter[0] != 0 or piece_counter[2] != 0:
if piece_counter[1] != 0 or piece_counter[3] != 0:
if move_counter == move_limit:
outcome_counter[j][0] = 3
else:
outcome_counter[j][0] = 2
# if (j+1)%100==0:
# print("Tie game for game #" + str(j + 1) + " in " + str(move_counter) + " turns!")
else:
outcome_counter[j][0] = 0
# if (j+1)%100==0:
# print("Player 1 won game #" + str(j + 1) + " in " + str(move_counter) + " turns!")
else:
outcome_counter[j][0] = 1
# if (j+1)%100==0:
# print("Player 2 won game #" + str(j + 1) + " in " + str(move_counter) + " turns!")
outcome_counter[j][1] = move_counter
outcome_counter[j][2] = piece_counter[0]
outcome_counter[j][3] = piece_counter[1]
outcome_counter[j][4] = piece_counter[2]
outcome_counter[j][5] = piece_counter[3]
player1.game_completed()
player2.game_completed()
#game_board.print_board()
game_board.reset_board()
return outcome_counter
def pretty_outcome_display(outcomes):
"""
Prints the outcome of play_n_games in a easy to understand format.
TO DO:
1) Add functionality for pieces in each game
2) Add ability to take other strings for AI info and display it
"""
game_wins = [0,0,0,0]
total_moves = 0
max_moves_made = float("-inf")
min_moves_made = float("inf")
for outcome in outcomes:
total_moves = total_moves + outcome[1]
if outcome[1] < min_moves_made:
min_moves_made = outcome[1]
if outcome[1] > max_moves_made:
max_moves_made = outcome[1]
game_wins[outcome[0]] = game_wins[outcome[0]] + 1
print("Games Played: ".ljust(35), len(outcomes))
print("Player 1 wins: ".ljust(35), game_wins[0])
print("Player 2 wins: ".ljust(35), game_wins[1])
print("Games exceeded move limit: ".ljust(35), game_wins[3])
print("Games tied: ".ljust(35), game_wins[2])
print("Total moves made: ".ljust(35), total_moves)
print("Average moves made: ".ljust(35), total_moves/len(outcomes))
print("Max moves made: ".ljust(35), max_moves_made)
print("Min moves made: ".ljust(35), min_moves_made)
def plot_end_game_information(outcome, interval, title="End of Game Results"):
"""
"""
player1_wins = [0 for _ in range(int(len(outcome)/interval))]
player2_wins = [0 for _ in range(int(len(outcome)/interval))]
ties = [0 for _ in range(int(len(outcome)/interval))]
move_limit = [0 for _ in range(int(len(outcome)/interval))]
for j in range(int(len(outcome)/interval)):
for i in range(interval):
if outcome[j*interval + i][0] == 0:
player1_wins[j] = player1_wins[j] + 1
elif outcome[j*interval + i][0] == 1:
player2_wins[j] = player2_wins[j] + 1
elif outcome[j*interval + i][0] == 2:
ties[j] = ties[j] + 1
else:
move_limit[j] = move_limit[j] + 1
plt.figure(title)
p1_win_graph, = plt.plot(player1_wins, label = "Player 1 wins")
p2_win_graph, = plt.plot(player2_wins, label = "Player 2 wins")
tie_graph, = plt.plot(ties, label = "Ties")
move_limit_graph, = plt.plot(move_limit, label = "Move limit reached")
plt.ylabel("Occurance per " +str(interval) + " games")
plt.xlabel("Interval")
plt.legend(handles=[p1_win_graph, p2_win_graph, tie_graph, move_limit_graph])
LEARNING_RATE = .005
DISCOUNT_FACTOR = .3
NUM_GAMES_TO_TRAIN = 100
NUM_TRAINING_ROUNDS = 25
NUM_VALIDATION_GAMES = 5
NUM_GAMES_TO_TEST = 0
TRAINING_RANDOM_MOVE_PROBABILITY = .25
ALPHA_BETA_DEPTH = 2
TRAINING_MOVE_LIMIT = 500
VALIDATION_MOVE_LIMIT = 1000
TESTING_MOVE_LIMIT = 2000
PLAYER1 = Q_Learning_AI(True, LEARNING_RATE, DISCOUNT_FACTOR, the_random_move_probability=TRAINING_RANDOM_MOVE_PROBABILITY)#, info_location="data.json")
PLAYER2 = Alpha_beta(False, ALPHA_BETA_DEPTH)
#PLAYER3 = Alpha_beta(False, 1)
PLAYER4 = Alpha_beta(False, 3)
# PLAYER5 = Q_Learning_AI(False, LEARNING_RATE, DISCOUNT_FACTOR, the_random_move_probability=TRAINING_RANDOM_MOVE_PROBABILITY)
#PLAYER1.print_transition_information(PLAYER1.get_transitions_information())
training_info = []
validation_info = []
for j in range(NUM_TRAINING_ROUNDS):
training_info.extend(play_n_games(PLAYER1, PLAYER2, NUM_GAMES_TO_TRAIN, TRAINING_MOVE_LIMIT))
PLAYER1.print_transition_information(PLAYER1.get_transitions_information())
PLAYER1.set_random_move_probability(0)
PLAYER1.set_learning_rate(0)
validation_info.extend(play_n_games(PLAYER1, PLAYER4, NUM_VALIDATION_GAMES, VALIDATION_MOVE_LIMIT))
print("Round " + str(j+1) + " completed!")
PLAYER1.set_random_move_probability(TRAINING_RANDOM_MOVE_PROBABILITY)
PLAYER1.set_learning_rate(LEARNING_RATE)
#print("")
#PLAYER1.print_transition_information(PLAYER1.get_transitions_information())
print("")
PLAYER1.save_transition_information()
#plot_end_game_information(training_info, 200, "Training Information")
#plot_end_game_information(validation_info, NUM_VALIDATION_GAMES, "Validation Information")
plt.show()
pretty_outcome_display(training_info)
print("")
pretty_outcome_display(validation_info)
"""
PLAYER1.set_random_move_probability(0)
pretty_outcome_display(play_n_games(PLAYER1, PLAYER2, NUM_GAMES_TO_TEST, TESTING_MOVE_LIMIT))
PLAYER1.print_transition_information(PLAYER1.get_transitions_information())
print(" ")
pretty_outcome_display(play_n_games(PLAYER1, PLAYER3, NUM_GAMES_TO_TEST, TESTING_MOVE_LIMIT))
PLAYER1.print_transition_information(PLAYER1.get_transitions_information())
print(" ")
pretty_outcome_display(play_n_games(PLAYER1, PLAYER4, NUM_GAMES_TO_TEST, TESTING_MOVE_LIMIT))
PLAYER1.print_transition_information(PLAYER1.get_transitions_information())
"""
PLAYER1.save_transition_information()