-
Notifications
You must be signed in to change notification settings - Fork 32
/
triplet.py
183 lines (143 loc) · 7.61 KB
/
triplet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import torch
def _pairwise_distances(embeddings, squared=False):
"""Compute the 2D matrix of distances between all the embeddings.
Args:
embeddings: tensor of shape (batch_size, embed_dim)
squared: Boolean. If true, output is the pairwise squared euclidean distance matrix.
If false, output is the pairwise euclidean distance matrix.
Returns:
pairwise_distances: tensor of shape (batch_size, batch_size)
"""
dot_product = torch.matmul(embeddings, embeddings.t())
# Get squared L2 norm for each embedding. We can just take the diagonal of `dot_product`.
# This also provides more numerical stability (the diagonal of the result will be exactly 0).
# shape (batch_size,)
square_norm = torch.diag(dot_product)
# Compute the pairwise distance matrix as we have:
# ||a - b||^2 = ||a||^2 - 2 <a, b> + ||b||^2
# shape (batch_size, batch_size)
distances = square_norm.unsqueeze(0) - 2.0 * dot_product + square_norm.unsqueeze(1)
# Because of computation errors, some distances might be negative so we put everything >= 0.0
distances[distances < 0] = 0
if not squared:
# Because the gradient of sqrt is infinite when distances == 0.0 (ex: on the diagonal)
# we need to add a small epsilon where distances == 0.0
mask = distances.eq(0).float()
distances = distances + mask * 1e-16
distances = (1.0 -mask) * torch.sqrt(distances)
return distances
def _get_triplet_mask(labels, device):
"""Return a 3D mask where mask[a, p, n] is True iff the triplet (a, p, n) is valid.
A triplet (i, j, k) is valid if:
- i, j, k are distinct
- labels[i] == labels[j] and labels[i] != labels[k]
Args:
labels: tf.int32 `Tensor` with shape [batch_size]
"""
# Check that i, j and k are distinct
indices_equal = torch.eye(labels.size(0)).bool()
indices_not_equal = ~indices_equal
i_not_equal_j = indices_not_equal.unsqueeze(2)
i_not_equal_k = indices_not_equal.unsqueeze(1)
j_not_equal_k = indices_not_equal.unsqueeze(0)
distinct_indices = (i_not_equal_j & i_not_equal_k) & j_not_equal_k
label_equal = labels.unsqueeze(0) == labels.unsqueeze(1)
i_equal_j = label_equal.unsqueeze(2)
i_equal_k = label_equal.unsqueeze(1)
valid_labels = ~i_equal_k & i_equal_j
return valid_labels.to(device) & distinct_indices.to(device)
def _get_anchor_positive_triplet_mask(labels, device):
"""Return a 2D mask where mask[a, p] is True iff a and p are distinct and have same label.
Args:
labels: tf.int32 `Tensor` with shape [batch_size]
Returns:
mask: tf.bool `Tensor` with shape [batch_size, batch_size]
"""
# Check that i and j are distinct
indices_equal = torch.eye(labels.size(0)).bool().to(device)
indices_not_equal = ~indices_equal
# Check if labels[i] == labels[j]
# Uses broadcasting where the 1st argument has shape (1, batch_size) and the 2nd (batch_size, 1)
labels_equal = labels.unsqueeze(0) == labels.unsqueeze(1)
return labels_equal.to(device) & indices_not_equal.to(device)
def _get_anchor_negative_triplet_mask(labels):
"""Return a 2D mask where mask[a, n] is True iff a and n have distinct labels.
Args:
labels: tf.int32 `Tensor` with shape [batch_size]
Returns:
mask: tf.bool `Tensor` with shape [batch_size, batch_size]
"""
# Check if labels[i] != labels[k]
# Uses broadcasting where the 1st argument has shape (1, batch_size) and the 2nd (batch_size, 1)
return ~(labels.unsqueeze(0) == labels.unsqueeze(1))
# Cell
def batch_hard_triplet_loss(labels, embeddings, margin, squared=False, device='cpu'):
"""Build the triplet loss over a batch of embeddings.
For each anchor, we get the hardest positive and hardest negative to form a triplet.
Args:
labels: labels of the batch, of size (batch_size,)
embeddings: tensor of shape (batch_size, embed_dim)
margin: margin for triplet loss
squared: Boolean. If true, output is the pairwise squared euclidean distance matrix.
If false, output is the pairwise euclidean distance matrix.
Returns:
triplet_loss: scalar tensor containing the triplet loss
"""
# Get the pairwise distance matrix
pairwise_dist = _pairwise_distances(embeddings, squared=squared)
# For each anchor, get the hardest positive
# First, we need to get a mask for every valid positive (they should have same label)
mask_anchor_positive = _get_anchor_positive_triplet_mask(labels, device).float()
# We put to 0 any element where (a, p) is not valid (valid if a != p and label(a) == label(p))
anchor_positive_dist = mask_anchor_positive.to(device) * pairwise_dist.to(device)
# shape (batch_size, 1)
hardest_positive_dist, _ = anchor_positive_dist.max(1, keepdim=True)
# For each anchor, get the hardest negative
# First, we need to get a mask for every valid negative (they should have different labels)
mask_anchor_negative = _get_anchor_negative_triplet_mask(labels).float()
# We add the maximum value in each row to the invalid negatives (label(a) == label(n))
max_anchor_negative_dist, _ = pairwise_dist.max(1, keepdim=True)
anchor_negative_dist = pairwise_dist + max_anchor_negative_dist * (1.0 - mask_anchor_negative)
# shape (batch_size,)
hardest_negative_dist, _ = anchor_negative_dist.min(1, keepdim=True)
# Combine biggest d(a, p) and smallest d(a, n) into final triplet loss
tl = hardest_positive_dist.to(device) - hardest_negative_dist.to(device) + margin
tl[tl < 0] = 0
triplet_loss = tl.mean()
return triplet_loss
# Cell
def batch_all_triplet_loss(labels, embeddings, margin, squared=False, device='cpu'):
"""Build the triplet loss over a batch of embeddings.
We generate all the valid triplets and average the loss over the positive ones.
Args:
labels: labels of the batch, of size (batch_size,)
embeddings: tensor of shape (batch_size, embed_dim)
margin: margin for triplet loss
squared: Boolean. If true, output is the pairwise squared euclidean distance matrix.
If false, output is the pairwise euclidean distance matrix.
Returns:
triplet_loss: scalar tensor containing the triplet loss
"""
# Get the pairwise distance matrix
pairwise_dist = _pairwise_distances(embeddings, squared=squared)
anchor_positive_dist = pairwise_dist.unsqueeze(2)
anchor_negative_dist = pairwise_dist.unsqueeze(1)
# Compute a 3D tensor of size (batch_size, batch_size, batch_size)
# triplet_loss[i, j, k] will contain the triplet loss of anchor=i, positive=j, negative=k
# Uses broadcasting where the 1st argument has shape (batch_size, batch_size, 1)
# and the 2nd (batch_size, 1, batch_size)
triplet_loss = anchor_positive_dist - anchor_negative_dist + margin
# Put to zero the invalid triplets
# (where label(a) != label(p) or label(n) == label(a) or a == p)
mask = _get_triplet_mask(labels, device)
triplet_loss = mask.float() * triplet_loss.to(device)
# Remove negative losses (i.e. the easy triplets)
triplet_loss[triplet_loss < 0] = 0
# Count number of positive triplets (where triplet_loss > 0)
valid_triplets = triplet_loss[triplet_loss > 1e-16]
num_positive_triplets = valid_triplets.size(0)
num_valid_triplets = mask.sum()
fraction_positive_triplets = num_positive_triplets / (num_valid_triplets.float() + 1e-16)
# Get final mean triplet loss over the positive valid triplets
triplet_loss = triplet_loss.sum() / (num_positive_triplets + 1e-16)
return triplet_loss, fraction_positive_triplets