-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualize_CAM.py
37 lines (33 loc) · 1.25 KB
/
visualize_CAM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
from Grad_CAM.grad_cam import CAM
import pickle
import mgzip
from tqdm import tqdm
import torch
import argparse
from types import SimpleNamespace
import importlib
import sys
import imageio
import numpy as np
def parse_args():
# import config
# sys.path.append("config")
parser = argparse.ArgumentParser(description='')
parser.add_argument("-c", "--config", help="config filename")
parser_args, _ = parser.parse_known_args(sys.argv)
print("Using config file", parser_args.config)
args = importlib.import_module(parser_args.config).args
args["experiment_name"] = parser_args.config
args = SimpleNamespace(**args)
return args
if __name__=="__main__":
args = parse_args()
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
agent = torch.load(args.checkpoint, map_location=device)
with open('./test_states/dino_states7.pickle', 'rb') as f:
pkl = pickle.load(f)
states, actions = pkl['states'], pkl['actions']
heat_maps = []
for state, action in tqdm(zip(states, states), total=len(states)):
heat_maps.append(CAM(agent, state, action, use_cuda=True))
imageio.mimsave('./img/double_dqn/dino_grad_cam.gif', [np.array(img) for i, img in enumerate(heat_maps)], fps=30)