-
Notifications
You must be signed in to change notification settings - Fork 0
/
point.c
200 lines (170 loc) · 2.8 KB
/
point.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
#include <u.h>
#include <libc.h>
#include <geometry.h>
/* 2D */
Point2
Pt2(double x, double y, double w)
{
return (Point2){x, y, w};
}
Point2
Vec2(double x, double y)
{
return (Point2){x, y, 0};
}
Point2
addpt2(Point2 a, Point2 b)
{
return Pt2(a.x+b.x, a.y+b.y, a.w+b.w);
}
Point2
subpt2(Point2 a, Point2 b)
{
return Pt2(a.x-b.x, a.y-b.y, a.w-b.w);
}
Point2
mulpt2(Point2 p, double s)
{
return Pt2(p.x*s, p.y*s, p.w*s);
}
Point2
divpt2(Point2 p, double s)
{
return Pt2(p.x/s, p.y/s, p.w/s);
}
Point2
lerp2(Point2 a, Point2 b, double t)
{
t = fclamp(t, 0, 1);
return Pt2(
flerp(a.x, b.x, t),
flerp(a.y, b.y, t),
flerp(a.w, b.w, t)
);
}
double
dotvec2(Point2 a, Point2 b)
{
return a.x*b.x + a.y*b.y;
}
double
vec2len(Point2 v)
{
return sqrt(dotvec2(v, v));
}
Point2
normvec2(Point2 v)
{
double len;
len = vec2len(v);
if(len == 0)
return Pt2(0,0,0);
return Pt2(v.x/len, v.y/len, 0);
}
/*
* the edge function, from:
*
* Juan Pineda, “A Parallel Algorithm for Polygon Rasterization”,
* Computer Graphics, Vol. 22, No. 8, August 1988
*
* comparison of a point p with an edge [e0 e1]
* p to the right: +
* p to the left: -
* p on the edge: 0
*/
int
edgeptcmp(Point2 e0, Point2 e1, Point2 p)
{
Point3 e0p, e01, r;
p = subpt2(p, e0);
e1 = subpt2(e1, e0);
e0p = Vec3(p.x,p.y,0);
e01 = Vec3(e1.x,e1.y,0);
r = crossvec3(e0p, e01);
/* clamp to avoid overflow */
return fclamp(r.z, -1, 1); /* e0.x*e1.y - e0.y*e1.x */
}
/*
* (PNPOLY) algorithm by W. Randolph Franklin
*/
int
ptinpoly(Point2 p, Point2 *pts, ulong npts)
{
int i, j, c;
for(i = c = 0, j = npts-1; i < npts; j = i++)
if(p.y < pts[i].y != p.y < pts[j].y &&
p.x < (pts[j].x - pts[i].x) * (p.y - pts[i].y)/(pts[j].y - pts[i].y) + pts[i].x)
c ^= 1;
return c;
}
/* 3D */
Point3
Pt3(double x, double y, double z, double w)
{
return (Point3){x, y, z, w};
}
Point3
Vec3(double x, double y, double z)
{
return (Point3){x, y, z, 0};
}
Point3
addpt3(Point3 a, Point3 b)
{
return Pt3(a.x+b.x, a.y+b.y, a.z+b.z, a.w+b.w);
}
Point3
subpt3(Point3 a, Point3 b)
{
return Pt3(a.x-b.x, a.y-b.y, a.z-b.z, a.w-b.w);
}
Point3
mulpt3(Point3 p, double s)
{
return Pt3(p.x*s, p.y*s, p.z*s, p.w*s);
}
Point3
divpt3(Point3 p, double s)
{
return Pt3(p.x/s, p.y/s, p.z/s, p.w/s);
}
Point3
lerp3(Point3 a, Point3 b, double t)
{
t = fclamp(t, 0, 1);
return Pt3(
flerp(a.x, b.x, t),
flerp(a.y, b.y, t),
flerp(a.z, b.z, t),
flerp(a.w, b.w, t)
);
}
double
dotvec3(Point3 a, Point3 b)
{
return a.x*b.x + a.y*b.y + a.z*b.z;
}
Point3
crossvec3(Point3 a, Point3 b)
{
return Pt3(
a.y*b.z - a.z*b.y,
a.z*b.x - a.x*b.z,
a.x*b.y - a.y*b.x,
0
);
}
double
vec3len(Point3 v)
{
return sqrt(dotvec3(v, v));
}
Point3
normvec3(Point3 v)
{
double len;
len = vec3len(v);
if(len == 0)
return Pt3(0,0,0,0);
return Pt3(v.x/len, v.y/len, v.z/len, 0);
}