-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathload_gsvit.py
54 lines (43 loc) · 1.55 KB
/
load_gsvit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import random, os
import cv2, torch
import numpy as np
from PIL import Image
import torch.nn as nn
import torch.nn.functional as F
from torchvision.transforms import ToPILImage
from EfficientViT.classification.model.build import EfficientViT_M5
class EfficientViT(nn.Module):
def __init__(self, in_size, predict_change=False):
super(EfficientViT, self).__init__()
self.predict_change = predict_change
self.evit = EfficientViT_M5(pretrained='efficientvit_m5')
# remove the classification head
self.evit = torch.nn.Sequential(*list(self.evit.children())[:-1])
def forward(self, x):
out = self.evit(x)
decoded = self.decoder.forward(out)
return decoded
def process_inputs(images):
# flip color channels
tmp = images[:, 0, :, :].clone()
images[:, 0, :, :] = images[:, 2, :, :]
images[:, 2, :, :] = tmp
return images
if __name__ == "__main__":
np.random.seed(0)
torch.random.manual_seed(0)
batch_size = 16 # set to anything
device = "cuda:0" # set to anything
class GSViT(nn.Module):
def __init__(self):
super().__init__()
gsvit = EfficientViT(in_size=batch_size)
gsvit.load_state_dict(torch.load("GSViT.pkl"))
self.gsvit = gsvit.gsvit.to(device)
def forward(self, x):
x = process_inputs(x) # flip color channels
return self.gsvit(x)
gsvit = GSViT()
# write your training here
# you can run gsvit in train or eval mode
# e.g. gsvit.train(), gsvit.eval()