-
Notifications
You must be signed in to change notification settings - Fork 103
/
ImageRecognitionInception.cs
117 lines (94 loc) · 4.08 KB
/
ImageRecognitionInception.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
using System.Collections.Generic;
using System.Diagnostics;
using System.Drawing;
using System.IO;
using Tensorflow;
using Tensorflow.Keras.Utils;
using Tensorflow.NumPy;
using static Tensorflow.Binding;
using Console = Colorful.Console;
namespace TensorFlowNET.Examples;
/// <summary>
/// Inception v3 is a widely-used image recognition model
/// that has been shown to attain greater than 78.1% accuracy on the ImageNet dataset.
/// The model is the culmination of many ideas developed by multiple researchers over the years.
/// </summary>
public class ImageRecognitionInception : SciSharpExample, IExample
{
string dir = "ImageRecognitionInception";
string pbFile = "tensorflow_inception_graph.pb";
string labelFile = "imagenet_comp_graph_label_strings.txt";
List<NDArray> file_ndarrays = new List<NDArray>();
public ExampleConfig InitConfig()
=> Config = new ExampleConfig
{
Name = "Image Recognition Inception",
Enabled = true,
IsImportingGraph = false
};
public bool Run()
{
tf.compat.v1.disable_eager_execution();
PrepareData();
var graph = tf.Graph().as_default();
//import GraphDef from pb file
graph.Import(Path.Join(dir, pbFile));
var input_name = "input";
var output_name = "output";
var input_operation = graph.OperationByName(input_name);
var output_operation = graph.OperationByName(output_name);
var labels = File.ReadAllLines(Path.Join(dir, labelFile));
var result_labels = new List<string>();
var sw = new Stopwatch();
var sess = tf.Session(graph);
foreach (var nd in file_ndarrays)
{
sw.Restart();
var results = sess.run(output_operation.outputs[0], (input_operation.outputs[0], nd));
results = np.squeeze(results);
int idx = np.argmax(results);
Console.WriteLine($"{labels[idx]} {results[idx]} in {sw.ElapsedMilliseconds}ms", Color.Tan);
result_labels.Add(labels[idx]);
}
return result_labels.Contains("military uniform");
}
private NDArray ReadTensorFromImageFile(string file_name,
int input_height = 224,
int input_width = 224,
int input_mean = 117,
int input_std = 1)
{
var graph = tf.Graph().as_default();
var file_reader = tf.io.read_file(file_name, "file_reader");
var decodeJpeg = tf.image.decode_jpeg(file_reader, channels: 3, name: "DecodeJpeg");
var cast = tf.cast(decodeJpeg, tf.float32);
var dims_expander = tf.expand_dims(cast, 0);
var resize = tf.constant(new int[] { input_height, input_width });
var bilinear = tf.image.resize_bilinear(dims_expander, resize);
var sub = tf.subtract(bilinear, new float[] { input_mean });
var normalized = tf.divide(sub, new float[] { input_std });
var sess = tf.Session(graph);
return sess.run(normalized);
}
public override void PrepareData()
{
Directory.CreateDirectory(dir);
// get model file
string url = "https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip";
Web.Download(url, dir, "inception5h.zip");
Compress.UnZip(Path.Join(dir, "inception5h.zip"), dir);
// download sample picture
Directory.CreateDirectory(Path.Join(dir, "img"));
url = $"https://raw.githubusercontent.com/tensorflow/tensorflow/master/tensorflow/examples/label_image/data/grace_hopper.jpg";
Web.Download(url, Path.Join(dir, "img"), "grace_hopper.jpg");
url = $"https://raw.githubusercontent.com/SciSharp/TensorFlow.NET/master/data/shasta-daisy.jpg";
Web.Download(url, Path.Join(dir, "img"), "shasta-daisy.jpg");
// load image file
var files = Directory.GetFiles(Path.Join(dir, "img"));
for (int i = 0; i < files.Length; i++)
{
var nd = ReadTensorFromImageFile(files[i]);
file_ndarrays.Add(nd);
}
}
}