forked from cszn/KAIR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_challenge_sr.py
174 lines (134 loc) · 6.53 KB
/
main_challenge_sr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import os.path
import logging
import time
from collections import OrderedDict
import torch
from utils import utils_logger
from utils import utils_image as util
# from utils import utils_model
'''
This code can help you to calculate:
`FLOPs`, `#Params`, `Runtime`, `#Activations`, `#Conv`, and `Max Memory Allocated`.
- `#Params' denotes the total number of parameters.
- `FLOPs' is the abbreviation for floating point operations.
- `#Activations' measures the number of elements of all outputs of convolutional layers.
- `Memory' represents maximum GPU memory consumption according to the PyTorch function torch.cuda.max_memory_allocated().
- `#Conv' represents the number of convolutional layers.
- `FLOPs', `#Activations', and `Memory' are tested on an LR image of size 256x256.
For more information, please refer to ECCVW paper "AIM 2020 Challenge on Efficient Super-Resolution: Methods and Results".
# If you use this code, please consider the following citations:
@inproceedings{zhang2020aim,
title={AIM 2020 Challenge on Efficient Super-Resolution: Methods and Results},
author={Kai Zhang and Martin Danelljan and Yawei Li and Radu Timofte and others},
booktitle={European Conference on Computer Vision Workshops},
year={2020}
}
@inproceedings{zhang2019aim,
title={AIM 2019 Challenge on Constrained Super-Resolution: Methods and Results},
author={Kai Zhang and Shuhang Gu and Radu Timofte and others},
booktitle={IEEE International Conference on Computer Vision Workshops},
year={2019}
}
CuDNN (https://developer.nvidia.com/rdp/cudnn-archive) should be installed.
For `Memery` and `Runtime`, set 'print_modelsummary = False' and 'save_results = False'.
'''
def main():
utils_logger.logger_info('efficientsr_challenge', log_path='efficientsr_challenge.log')
logger = logging.getLogger('efficientsr_challenge')
# print(torch.__version__) # pytorch version
# print(torch.version.cuda) # cuda version
# print(torch.backends.cudnn.version()) # cudnn version
# --------------------------------
# basic settings
# --------------------------------
model_names = ['msrresnet', 'imdn']
model_id = 1 # set the model name
sf = 4
model_name = model_names[model_id]
logger.info('{:>16s} : {:s}'.format('Model Name', model_name))
testsets = 'testsets' # set path of testsets
testset_L = 'DIV2K_valid_LR' # set current testing dataset; 'DIV2K_test_LR'
testset_L = 'set12'
save_results = True
print_modelsummary = True # set False when calculating `Max Memery` and `Runtime`
torch.cuda.set_device(0) # set GPU ID
logger.info('{:>16s} : {:<d}'.format('GPU ID', torch.cuda.current_device()))
torch.cuda.empty_cache()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# --------------------------------
# define network and load model
# --------------------------------
if model_name == 'msrresnet':
from models.network_msrresnet import MSRResNet1 as net
model = net(in_nc=3, out_nc=3, nc=64, nb=16, upscale=4) # define network
model_path = os.path.join('model_zoo', 'msrresnet_x4_psnr.pth') # set model path
elif model_name == 'imdn':
from models.network_imdn import IMDN as net
model = net(in_nc=3, out_nc=3, nc=64, nb=8, upscale=4, act_mode='L', upsample_mode='pixelshuffle') # define network
model_path = os.path.join('model_zoo', 'imdn_x4.pth') # set model path
model.load_state_dict(torch.load(model_path), strict=True)
model.eval()
for k, v in model.named_parameters():
v.requires_grad = False
model = model.to(device)
# --------------------------------
# print model summary
# --------------------------------
if print_modelsummary:
from utils.utils_modelsummary import get_model_activation, get_model_flops
input_dim = (3, 256, 256) # set the input dimension
activations, num_conv2d = get_model_activation(model, input_dim)
logger.info('{:>16s} : {:<.4f} [M]'.format('#Activations', activations/10**6))
logger.info('{:>16s} : {:<d}'.format('#Conv2d', num_conv2d))
flops = get_model_flops(model, input_dim, False)
logger.info('{:>16s} : {:<.4f} [G]'.format('FLOPs', flops/10**9))
num_parameters = sum(map(lambda x: x.numel(), model.parameters()))
logger.info('{:>16s} : {:<.4f} [M]'.format('#Params', num_parameters/10**6))
# --------------------------------
# read image
# --------------------------------
L_path = os.path.join(testsets, testset_L)
E_path = os.path.join(testsets, testset_L+'_'+model_name)
util.mkdir(E_path)
# record runtime
test_results = OrderedDict()
test_results['runtime'] = []
logger.info('{:>16s} : {:s}'.format('Input Path', L_path))
logger.info('{:>16s} : {:s}'.format('Output Path', E_path))
idx = 0
start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)
for img in util.get_image_paths(L_path):
# --------------------------------
# (1) img_L
# --------------------------------
idx += 1
img_name, ext = os.path.splitext(os.path.basename(img))
logger.info('{:->4d}--> {:>10s}'.format(idx, img_name+ext))
img_L = util.imread_uint(img, n_channels=3)
img_L = util.uint2tensor4(img_L)
torch.cuda.empty_cache()
img_L = img_L.to(device)
start.record()
img_E = model(img_L)
# img_E = utils_model.test_mode(model, img_L, mode=2, min_size=480, sf=sf) # use this to avoid 'out of memory' issue.
# logger.info('{:>16s} : {:<.3f} [M]'.format('Max Memery', torch.cuda.max_memory_allocated(torch.cuda.current_device())/1024**2)) # Memery
end.record()
torch.cuda.synchronize()
test_results['runtime'].append(start.elapsed_time(end)) # milliseconds
# torch.cuda.synchronize()
# start = time.time()
# img_E = model(img_L)
# torch.cuda.synchronize()
# end = time.time()
# test_results['runtime'].append(end-start) # seconds
# --------------------------------
# (2) img_E
# --------------------------------
img_E = util.tensor2uint(img_E)
if save_results:
util.imsave(img_E, os.path.join(E_path, img_name+ext))
ave_runtime = sum(test_results['runtime']) / len(test_results['runtime']) / 1000.0
logger.info('------> Average runtime of ({}) is : {:.6f} seconds'.format(L_path, ave_runtime))
if __name__ == '__main__':
main()